比特派app下载安卓最新版本|ethernet电缆
比特派app下载安卓最新版本|ethernet电缆
以太网(Ethernet) - 知乎
以太网(Ethernet) - 知乎首页知乎知学堂发现等你来答切换模式登录/注册以太网(Ethernet)以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连…查看全部内容关注话题管理分享百科讨论精华视频等待回答详细内容以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。浏览量2691 万讨论量9731 帮助中心知乎隐私保护指引申请开通机构号联系我们 举报中心涉未成年举报网络谣言举报涉企侵权举报更多 关于知乎下载知乎知乎招聘知乎指南知乎协议更多京 ICP 证 110745 号 · 京 ICP 备 13052560 号 - 1 · 京公网安备 11010802020088 号 · 京网文[2022]2674-081 号 · 药品医疗器械网络信息服务备案(京)网药械信息备字(2022)第00334号 · 广播电视节目制作经营许可证:(京)字第06591号 · 服务热线:400-919-0001 · Investor Relations · © 2024 知乎 北京智者天下科技有限公司版权所有 · 违法和不良信息举报:010-82716601 · 举报邮箱:jubao@zhihu.
以太网电缆
以太网电缆
The store will not work correctly in the case when cookies are disabled.
您的浏览器似乎禁用了JavaScript
为了获得我们网站上的最佳体验,请确保在浏览器中打开Javascript
批量询价
跳到内容
登录/注册
客服电话:021-64400833
邮箱:eshop.cn.lks@lapp.com
网上下单,不限金额,尽享免费配送
切换导航
我的购物车
对比产品
菜单
产品电缆和电线动力和控制电缆用于标准应用的电缆无卤电缆用于恶劣工作环境的电缆伺服和电机电缆拖链电缆机器人和扭转电缆螺旋电缆特定行业使用的电缆用于电梯和传送带技术的电缆耐温电缆单芯线基础设施电缆数据线低频数据线电话电缆同轴电缆现场总线电缆以太网电缆光缆线束已组装的动力和控制电缆伺服线束控制电缆线束充电电缆线束动力电缆线束预制数据线以太网跳线光缆组件传感器-执行器线束现场总线线束网络和分布组件传感器执行器和现场总线分配用于传感器执行器和现场总线的分线盒用于传感器执行器和现场总线的Y型分配器现场总线I/O模块以太网分配以太网交换机GatewaysNAT/ Firewall & Router以太网I/O模块光纤SFP收发模块Etherline套件Industrial WirelessWireless Modem无线接入点监控解决方案以太网监控传感器/执行器和现场总线监控连接和控制监控光缆分线熔接盒Top-hat 导轨适配器传感器距离与站点传感器压力传感器位置传感器VisionPhotoelectric Sensors - LEDPhotoelectric Sensors - laserDistance SensorsColour, Contrast,luminescence sensorsPhotoelectric forks sensorsInductive, Ultrasonic, Capacitive sensors温度传感器连接器矩形连接器矩形连接器插芯矩形连接器罩壳矩形连接器插针矩形连接器模块化系统矩形连接器套件用于矩形连接器的工具矩形连接器的配件和备件圆形连接器电源连接器信号连接器Powerlock单极连接器圆形连接器插针用于圆形连接器的工具圆形连接器的配件和备件数据连接器电缆耦合器以太网连接器光缆连接器传感器执行器&现场总线连接器媒体转换器太阳能连接器太阳能连接器Splitter太阳能连接器的配件和工具工业连接器的工具工业连接器的压接工具工业连接器的拆卸工具软管夹套单进线口系统塑料电缆夹套黄铜电缆夹套不锈钢电缆夹套多进线口系统未组装的电缆已组装的电缆电缆夹套的工具和配件锁紧螺母密封件/防尘元件盲塞压力补偿元件缩径器扩径器电缆夹套的适配器密封圈/垫片装配工具接地套管电缆管道软管夹套的中间连接件Add-Ons压紧螺栓电缆保护和导向系统塑料电缆保护软管系统简易塑料保护软管带塑料螺旋条的塑料保护软管带有螺旋弹簧钢丝的塑料保护软管编织软管用于简易塑料软管的夹套用于带塑料螺旋条的塑料保护软管的夹套用于带螺旋弹簧钢丝的塑料保护软管夹套简易塑料保护软管的附件平行波纹电缆保护软管系统平行波纹保护软管可重新密封的保护软管平行波纹保护软管的夹套用于可重新密封的保护软管的夹套平行波纹保护软管的配件金属电缆保护软管系统带联锁结构的保护软管带联锁结构和编织的保护软管双重联锁结构的保护软管用于带联锁结构保护软管的夹套用于带联锁结构和编织护套的保护软管的夹套用于带双重联锁结构的保护软管的夹套金属保护软管的配件带双重联锁结构的保护软管的配件带护套的金属电缆保护软管系统带薄壁护套的金属软管带厚壁护套的金属软管夹套,用于带薄壁护套的金属软管夹套,用于带厚壁护套的金属软管带薄壁护套的金属软管的配件带厚壁护套的金属软管的配件用于特殊用途的电缆保护软管系统热保护卫生设计(食品和饮料技术)E-KIT (E-Mobility)电缆保护软管的工具和配件支架电缆保护软管的中间连接件电缆保护软管的工具老虎钳气动软管简易气动软管标识系统电缆与单芯线标识定制标签手动“现场”标识激光打印标签热敏打印标签零件标识定制标签手动“现场”标识激光打印标签热敏打印标签安全标识警示标志禁止标志强制性标志打印机和软件Software热敏打印机电子标签打印机打印机配件色带色带标识系统的工具和配件手动压印机压印钢带切割和冲孔工具记号笔工具和配件电气连接材料导体终端套管电缆端子面板连接器EMC 产品和接地产品屏蔽连接器铜丝编织层屏蔽带接地帶EMC 屏蔽夹绝缘软管和热缩软管产品绝缘带绝缘软管收缩软管密封帽和分支套管热风枪电缆捆扎解决方案塑料缠绕带电缆捆扎电缆扎带和配件电缆扎带电缆扎带底座电缆扎带的工具电缆滑车系统C型轨道的电缆滑车系统I 型导轨的电缆滑车系统钢丝电缆滑车系统标准罩壳工业机箱壁挂式控制柜落地式控制柜开关设备和延长臂控制柜的装配系统其它电缆楔形夹工具剥皮和剥线工具压接工具拆卸和紧固工具切割工具和夹钳安装工具配件适配器覆盖和保护紧固材料锁扣编码元件密封件电气连接材料定位销控制柜结构螺栓光缆的工具和配件抛光配件熔接配件光纤剥皮工具清洁剂组装工具测量装置电缆管理系统电缆管道紧固夹物流产品开卷解决方案电缆卷筒放卷机线盘小推车单芯线解决方案单芯线小推车单芯线(收纳)车配件品牌ÖLFLEX® 动力控制电缆UNITRONIC® 数据通讯系统ETHERLINE® 用于以太网技术的数据传输系统HITRONIC® 光纤数据传输系统EPIC® 工业连接器SKINTOP® 电缆夹套SILVYN® 电缆保护软管系统和电缆传输系统FLEXIMARK® 电缆标识系统行业、解决方案及应用案例行业能源行业风能行业太阳能/光伏行业汽车/新能源汽车行业新能源汽车行业食品饮料行业机器人行业自动化行业轨道交通行业机械设备行业舞台照明行业解决方案ÖLFLEX® CONNECT 线束加工系统解决方案工业通信解决方案成功案例成功案例服务新闻中心公司新闻产品资讯缆普客户杂志关于缆普缆普集团缆普集团世界分布联系我们联系缆普
账户
首页
以太网电缆
ETHERNET® 电缆
工业以太网带来的新可能性
工业以太网是传统现场总线系统的一个极具吸引力的替代方案。(独立于制造商的) 以太网标准在办公室提供的优势也越来越多地得到工业用户的认可。开放的以太网标准为行业开辟了新的机遇。
产品范围概览:
ETHERLINE® PN
适用于PROFINET应用的高可靠性Cat.5 和 cat.6 电缆同样适用于EtherCat 和 EtherNet/IP应用。
根据 PROFINET标准特别开发的电缆, 适用于以下电缆类型:
Cat.5 Type A, 用于固定敷设:
ETHERLINE® PN Cat.5
Cat.5 Type B, 用于偶尔移动: ETHERLINE® PN FLEX
Cat.5 Type C
ETHERLINE® PN Cat.5 FD
ETHERLINE® Cat.6 FD
即使在持续移动应用时也可实现高速数据传输。
专为动力拖链应用而设计
最高传输速率 1 Gbit/s
带有 UL 认证
PUR 外护套,适用于恶劣环境
请查看 Cat.6 FD产品资料
ETHERLINE® CAT.6 FD
EPIC® Data - RJ45 Cat.6a
带防尘帽的现场安装连接器
符合ISO/IEC 11801:2010 Cat.6a 传输特性
符合 IEC 60603-7-51 标准的现场装配RJ45 连接器和工业以太网模块应用
360° 屏蔽
穿刺接触方式,适用于导体界面 AWG27/7, AWG22/7, AWG24/1 和 AWG 22/1
接线管理采用4个不同色标,符合 t568a 或 T568A 标准
请查看 RJ45接头的完整技术资料 RJ45 Connectors
Get a Quote for
客户姓名
客户邮箱
电话号码
留言
提交
电子新闻
注册我们的时事通讯:
订阅
关于我们
缆普集团
缆普集团世界分布
缆普中国
缆普中国分布
历史
里程碑
关于我们
缆普集团
缆普集团世界分布
缆普中国
缆普中国分布
历史
里程碑
成功故事
客户支持
注册/登录
我的账户
购物车
联系我们
服务
行业、解决方案及成功案例
客户支持
注册/登录
我的账户
购物车
联系我们
服务
行业领域
相关条例
相关条款
隐私政策
网站地图
相关条例
相关条款
隐私政策
网站地图
联系我们
请致电 021-64400833
发送邮件至 eshop.cn.lks@lapp.com
订阅最新资讯
Newsletter
Sign Up for Our Newsletter:
Subscribe
联系我们
请致电 021-64400833*375/337
发送邮件至 eshop@lappgroup.com.cn
订阅最新资讯
Newsletter
Sign Up for Our Newsletter:
Subscribe
与我们互动
© 2023 Lapp China. All Rights Reserved.
沪ICP备15027493号-3
高级
支付方式:
与我们互动
支付方式:
其他国家站点
Lappgroup Global Site
美洲
北美
加拿大
墨西哥
美国
南美
巴西
欧洲
北欧
丹麦
挪威
瑞典
中欧
奥地利
比利时
捷克共和国
德国
卢森堡
荷兰
斯洛伐克
东欧
爱沙尼亚
拉脱维亚
立陶宛
波兰
俄罗斯
乌克兰
南欧
意大利
西班牙
东南欧
匈牙利
罗马尼亚
斯洛文尼亚
土耳其
西欧
法国
爱尔兰
英国
中东/非洲
非洲
埃及
南非
中东
巴林岛
伊朗
伊拉克
约旦
哈萨克斯坦
科威特
黎巴嫩
阿曼
巴基斯坦
卡塔尔
沙特阿拉伯
叙利亚共和国
阿拉伯联合酋长国
也门
亚太地区
北亚
中国
日本
韩国
南亚
印度
斯里兰卡
东南亚
新加坡
大洋洲
澳大利亚
点击此处查看更多缆普相关合作公司。
Website with eshop
技术解读PROFINET、Ethernet/IP等7种主流工业以太网 - 知乎
技术解读PROFINET、Ethernet/IP等7种主流工业以太网 - 知乎首发于智能制造之家切换模式写文章登录/注册技术解读PROFINET、Ethernet/IP等7种主流工业以太网智能制造之家化学制品制造业 从业人员写在面前大家好,我是小智,智能制造之家号主~前面我们汇总了各种各样的接口、总线与工业以太网等:最全整理工业通讯上的领域各种总线+协议+规范+接口—数据采集与控制也整理了工业以太网的基础知识:必备的工业以太网的基础知识今天我们来聊一聊各种主流的工业以太网~PROFINET、POWERLINK、ETHERNET/IP、ETHERCAT、SERCOSIII、MODBUS TCP、CC-LINK IE.....今天算是总体汇总介绍,填上次在文章:工业通讯网络层级全解读,解析工业网络的自动化金字塔当中提到的会技术分析PROFINET、POWERLINK、ETHERNET/IP、ETHERCAT等各大工业以太网的坑,后续继续逐步推出细化的推出相关文章~今天的内容:01 通讯中的自动化金字塔02 技术分析主流工业以太网03 网络化与软件化的自动化04 未来的工业通信01 通讯中的自动化金字塔说到自动化金字塔,我想每一个智造领域的技术人员应该都很清楚,从传感器/执行器通讯,到现场总线,再到实时以太网,以及办公网络,不同的层级与环境可以采用不同的通讯方式,今天的主要内容就是图中红色部分,实时以太网~自动化部件之间的高效通讯一直是生产系统必不可少的的前提之一,典型的自动化部件有以下几类:PLC控制器,HMI面板、驱动、远程IO、传感器与执行器等,正是由于通讯系统连接了各种各样的自动化部件,使他们构成一个有机的整体~在通讯的自动化金字塔中,不论是从事PLM、还是MES/MOM、SCADA、PLC、驱动等,通讯都会伴随着你,在IT、OT融合的时代,CT(通讯技术)起到了至关重要的作用,被炒得火热的万物互联,通讯始终是基石~02 技术分析主流工业以太网下面我们还是回到今天的主要话题:工业以太网我想下面的各个组织与工业以太网大家应该都很熟悉,我就不再赘述我们所说的工业以太网是基于以太网,那到底二者之间有什么样的关系呢?如果看到了这里,你不知道7层协议,不知道以太网在哪些层,不知道TCP、UDP等等,那建议你可以先补一补基础知识:网络的OSI七层模型和TCP/IP五层模型 | 网络基础(三)或者不用接着往下看了~比如我现在问你, PROFINET的TCP/IP标准通信、PROFINET RT和PROFINET IRT有什么区别?你或许可以从今天的文章中获得答案。今天整体来看一下PROFINET、ETHERNET/IP、ETHERCAT等他们在7层协议中的一些不同。这也是为啥了解工业以太网,必须有一定的网络知识~1.将网络七层分为软件层和硬件层,则Ethernet/IP等是下面这样的;特点:完全基于TCP\UDP\IP,Process Data通过TCP/IP传输,硬件层未更改,采用传统以太网控制器2.而PROFINET RT、POWERLINK则是下面这样的:特点:部分基于TCP\UDP\IP,硬件层未更改,具有Process Data协议,直接由以太网帧进行传输,TCP/UDP依然存在,不过由Timing Layer控制3.而PROFINET IRT、ETHERCAT等则是下面这样的:特点:硬件层更改,使用实时以太网控制器从以上三张图,就可以很好的为你解密PROFINET、POWERLINK、ETHERNET/IP、ETHERCAT、SERCOSIII、MODBUS TCP、CC-LINK IE等七大工业以太网从硬件到软件的不同,解密PROFINET的RT和IRT模式,工业以太网和一般IT网络的差异~今天是本系列的第一讲,算是个开胃菜,后续会进行更详细的分析与解读各大工业以太网,比如所谓的实时工业以太网是如何解决传统以太网数据链路层CSMA/CD技术的非实时、非确定性的,感兴趣的可以持续关注~03 网络化与软件化的自动化前不久HMS关于工业网络的报告:2020工业网络市场份额报告:主流工业以太网、现场总线、工业无线份额对比中,我们已经看到工业以太网的市场份额已经高达64%顺势而为,跨界融合一直是本号所提倡的,正如前面的爆款文章:西门子、施耐德、罗克韦尔等巨头告诉你,为何你大爷始终是你大爷当中说的:所有面向未来的自动化供应商,都在加速拥抱软件的步伐而前面我们也提到,如今的自动化,已经变得越来越网络化,越来越软件化了,这是趋势,我们没有必要固步自封,守着自己的一某三分地,就像前面在文章:自动化早已不是原来的自动化,为何你却还是原来的你当中说的,技术始终是广度和深度,几乎所有技术都来自于此前已经存在的技术,就好比今天要说的PROFINET、POWERLINK、ETHERNET/IP、ETHERCAT、SERCOSIII、MODBUS TCP、CC-LINK IE等等工业以太网,都和以太网脱不了关系,举个例子,如果一个网络小白和一个CCNP甚至更高的水平的人,同时来看工业以太网,小白可能看到那么新名词,可能马上入门到放弃,而CCNP的朋友可能会觉得如鱼得水~那普通人如何扩展自己色深度和广度呢?我的看法是,让兴趣来引导自己,把本职工作做到公司无人替代的位置,而不止步于此,并在此基础上广度发展。下面具体来说说要如何权衡自己的广度和深度:1.广度为辅,深度为主。人生、时间有限,我们不可能精通所有的技术,但我们可以努力地精通工作相关的、有前景的、感兴趣的技术。2.基础扎实,深入底层。只是解决工作上的问题是远远不够的,应该在工作之余去学习更底层的技术,所谓知其然还得知其所以然。多多思考:为什么要这样用?怎么实现的?还有更好的办法去实现吗?3.触类旁通,适度学习。学任何的知识都要形成一个体系,才能学得深,记得牢。04 未来的工业通信前面转载过一篇文章:为什么一定要了解OPC UA TSN——未来的工业通信标准其实目前,各大工业以太网都已逐渐支持TSN技术:OPCUA、PROFINET、Ethercat等都支持的TSN是什么?—工业通信未来已来OPC UA TSNPROFINET TSN或许短时间内依然很难看到TSN的大量应用,但是未来可期~当然,除了目前工业网络中普遍存在的现场总线、工业以太网之外,工业5G等也逐步到来~参考:http://www.ethercat.org.cn/cn.htmhttps://www.ethernet-powerlink.org以上仅代表个人观点,不喜勿喷,欢迎开放交流,也欢迎大神降维打击~往期推荐当树莓派+S7-1500与阿里云跨界相遇-自动化工程师的数字化之路最全解读西门子MES/MOM平台Opcenter,100多亿美金的数字化之路斗地主、扫雷、贪吃蛇、潜水艇...盘点那些PLC“不务正业”骚操作[附代码]哈工大被禁Matlab,美国用工业软件卡死中国制造?这只是开始...[智能制造]未来,我们需要什么样的自动化工程师?TIA Portal配合PS虚拟调试-OPC UA数据通讯西家、罗家、施家等巨头PLC与WinMOD、PDPS联合虚拟调试是什么样子?施耐德Wonderware HMI/SCADA、MES/MOM入门以太网、Profinet、Profibus三种网络架构搭建及拓扑分析工业网络、工业无线、工业识别RFID的实例汇总与分析编辑于 2021-01-13 12:39以太网(Ethernet)Ethernet通信协议赞同 626 条评论分享喜欢收藏申请转载文章被以下专栏收录智能制造之家微信公众号:智能制造之家,10W+朋友共话智
以太网_百度百科
百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心以太网播报讨论上传视频计算机局域网技术收藏查看我的收藏0有用+10本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是应用最普遍的局域网技术,取代了其他局域网技术如令牌环、FDDI和ARCNET。中文名以太网外文名ethernet定 义局域网的一种发 源xerox(施乐)创建时间1980目录1以太网简介2以太网起源3类型介绍4经典以太网5交换式以太网6相关技术7以太网交换机8存在的问题9车载以太网10工业以太网以太网简介播报编辑以太网是现实世界中最普遍的一种计算机网络。以太网有两类:第一类是经典以太网,第二类是交换式以太网,使用了一种称为交换机的设备连接不同的计算机。经典以太网是以太网的原始形式,运行速度从3~10 Mbps不等;而交换式以太网正是广泛应用的以太网,可运行在100、1000和10000Mbps那样的高速率,分别以快速以太网、千兆以太网和万兆以太网的形式呈现。 [1]以太网的标准拓扑结构为总线型拓扑,但快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网起源播报编辑以太网的故事始于ALOHA时期,确切的时间是在一个名叫Robert Metcalfe的学生获得麻省理工学院的学士学位后,搬到河对岸的哈佛大学攻读博士学位之后。在他学习期间,他接触到了Abramson的工作,他对此很感兴趣。从哈佛毕业之后,他决定前往施乐帕洛阿尔托研究中心正式工作之前留在夏威夷度假,以便帮助Abramson工作。当他到帕洛阿尔托研究中心,他看到那里的研究人员已经设计并建造出后来称为个人计算机的机器,但这些机器都是孤零零的;他便运用帮助Abramson工作获得的知识与同事David Boggs 设计并实现了第一个局域网。该局域网采用一个长的粗同轴电缆,以3Mbps速率运行。 [1]他们把这个系统命名为以太网,人们曾经认为通过它可以传播电磁辐射。 [1]类型介绍播报编辑早期的以太网兆比特以太网施乐以太网(Xerox Ethernet,又称“施乐以太网”)──是以太网的雏型。最初的2.94Mbit/s以太网仅在施乐公司里内部使用。而在1982年,Xerox与DEC及Intel组成DIX联盟,并共同发表了Ethernet Version 2(EV2)的规格,并将它投入商场市场,且被普遍使用。而EV2的网络就是受IEEE承认的10BASE5。10BROAD36──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。1BASE5──也称为星型局域网,速率是1Mbit/s。在商业上很失败,但同时也是双绞线的第一次使用。10Mbps以太网10BASE5(又称粗缆(Thick Ethernet)或黄色电缆)──最早实现10 Mbit/s以太网。早期IEEE标准,使用单根RG-11同轴电缆,最大距离为500米,并最多可以连接100台计算机的收发器,而缆线两端必须接上50欧姆的终端电阻。接收端透过所谓的“插入式分接头”插入电缆的内芯和屏蔽层。在电缆终结处使用N型连接器。尽管由于早期的大量布设,到现在还有一些系统在使用,这一标准实际上被10BASE2取代。10BASE2(又称细缆(Thin Ethernet)或模拟网上)── 10BASE5后的产品,使用RG-58同轴电缆,最长转输距离约200米(实际为185米),仅能连接30台计算器,计算器使用T型适配器连接到带有BNC连接器的网卡,而线路两头需要50欧姆的终结器。虽然在能力、规格上不及10BASE5,但是因为其线材较细、布线方便、成本也便宜,所以得到更广泛的使用,淘汰了10BASE5。由于双绞线的普及,它也被各式的双绞线网络取代。StarLAN──第一个双绞线上实现的以太网上标准10 Mbit/s。后发展成10BASE-T。10BASE-T──使用3类双绞线、4类双绞线、5类双绞线的4根线(两对双绞线)100米。以太网集线器或以太网交换机位于中间连接所有节点。FOIRL ──光纤中继器链路。光纤以太网上原始版本。10BASE-F ── 10Mbps以太网光纤标准通称,2公里。只有10BASE-FL应用比较广泛。10BASE-FL ── FOIRL标准一种升级。10BASE-FB ──用于连接多个Hub或者交换机的骨干网技术,已废弃。10BASE-FP ──无中继被动星型网,没有实际应用的案例。100Mbps以太网(快速以太网)参见:百兆以太网快速以太网(Fast Ethernet)为IEEE在1995年发表的网上标准,能提供达100Mbps的传输速度。100BASE-T-- 下面三个100 Mbit/s双绞线标准通称,最远100米。100BASE-TX-- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。100BASE-FX-- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。 [2]1Gbps以太网1000BASE-T-- 1 Gbit/s介质超五类双绞线或6类双绞线。1000BASE-SX-- 1 Gbit/s多模光纤(取决于频率以及光纤半径,使用多模光纤时最长距离在220M至550M之间)。1000BASE-LX-- 1 Gbit/s多模光纤(小于550M)、单模光纤(小于5000M)。1000BASE-LX10-- 1 Gbit/s单模光纤(小于10KM)。长距离方案1000BASE-LHX--1 Gbit/s单模光纤(10KM至40KM)。长距离方案1000BASE-ZX--1 Gbit/s单模光纤(40KM至70KM)。长距离方案1000BASE-CX-- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。10Gbps以太网参见:10吉比特以太网新的万兆以太网标准包含7种不同类型,分别适用于局域网、城域网和广域网。使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand4x连接器和CX4电缆,最大长度15米。10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。10GBASE-LR和10GBASE-ER -- 透过单模光纤分别支持10公里和40公里10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)10GBASE-T-- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。100Gbps以太网参见:100G以太网新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。使用附加标准IEEE 802.3ba。40GBASE-KR4 -- 背板方案,最少距离1米。40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。100GBASE-ER4 -- 使用单模光纤,距离超过40公里。 [2]经典以太网播报编辑经典以太网用一个长电缆蜿蜒围绕着建筑物,这根电缆连接着所有的计算机。经典以太网的体系结构如下图《以太网》所示:以太网物理层以太网的每个版本都有电缆的最大长度限制(即无须放大的长度),这个范围内的信号可以正常传播,超过这个范围信号将无法传播。为了允许建设更大的网络,可以用中继器把多条电缆连接起来。中继器是一个物理层设备,它能接收、放大并在两个方向上重发信号。 [1]在这些电缆上,信息的发送使用曼彻斯特编码。 [1]MAC子层经典以太网使用1-坚持CSMA/CD算法,即当站有帧要发送时要侦听介质,一旦介质变为空闲便立即发送。在它们发送的同时监测信道上是否有冲突。如果有冲突,则立即终止传输,并发出一个短冲突加强信号,再等待一段随机时间后重发。 [1]交换式以太网播报编辑以太网的发展很快,从单根长电缆的典型以太网结构开始演变。单根电缆存在的问题,比如找出断裂或者松动位置等连接相关的问题,驱使人们开发出一种不同类型的布线模式。在这种模式中,每个站都有一条专用电线连接到一个中央集线器。集线器只是在电气上简单地连接所有连接线,就像把它们焊接在一起。集线器不能增加容量,因为它们逻辑上等同于单根电缆的经典以太网。随着越来越多的站加入,每个站获得的固定容量共享份额下降。最终,LAN将饱和。 [1]还有另一条出路可以处理不断增长的负载:即交换式以太网。交换式以太网的核心是一个交换机,它包含一块连接所有端口的高速背板。从外面看交换机很像集线器,它们都是一个盒子,通常拥有4-48个端口,每个端口都有一个标准的RJ-45连接器用来连接双绞电缆。交换机只把帧输出到该帧想去的端口。通过简单的插入或者拔出电缆就能完成添加或者删除一台机器,而且由于片状电缆或者端口通常只影响到一台机器,因此大多数错误都很容易被发现。这种配置模式仍然存在一个共享组件出现故障的问题,即交换机本身的故障:如果所有站都失去了网络连接,则IT人员知道该怎么解决这个问题:更换整个交换机。 [1]交换式以太网体系结构如下:以太网结构相关技术播报编辑共享介质带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台计算机共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台计算机要发送信息时,在以下行动与状态之间进行转换:1.开始- 如果线路空闲,则启动传输,否则跳转到第4步。2.发送- 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。3.成功传输- 向更高层的网络协议报告发送成功,退出传输模式。4.线路繁忙- 持续等待直到线路空闲。5.线路空闲- 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。6.超过最大尝试传输次数- 向更高层的网络协议报告发送失败,退出传输模式。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有计算机。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。中继器因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。集线器采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。以太网交换机播报编辑测试项目性能指标使用专用的以太网测试仪器进行测试,这些性能指标的测试结果还可以评估LAN系统是否满足验收要求。从GBT21671-2008“基于以太网的LAN系统验收评估规范”可以了解到局域网还可以通过测量诸如网络吞吐量,传输延迟和丢包率等性能指标来判断性能。以太网测试仪是一 款适合现场使用的坚固耐用的测试平台。它具有完整的以太网测试功能,双光口和双电口,以太网服务接口模块,HST-3000支持多种数据流测试。包括10/100/1000M以太网链路的流量生成和故障排除,它可以测试高达1Gbit/s的电气和光纤端口链路。由于验收检查中的各种条件的限制,可以支持点对点或路由网络的测试以用于交换机的例行测试。 [3]存在的问题现代测试仪器的整体特性是高可靠性,高性能和高适用性。因此,国内测试产品与国外产品之间的差距反映在这方面。虽然国内某些测试设备在一定的性能指标上接近国际先进水平,但具有达到国际标准的综合设备性能指标的产品普遍较少。此外,国内测试仪器大多是常见的规格,不能满足某些特殊环境下的测试工作。低度自动化测试也是一个常见问题。 [3]交换机测试技术如今,交换机以应用需求为向导对交换机的性能提出了新的要求。在网络综合服务、安全性、智能化等方面有了新的发展。协议测试是一种基本交换机测试技术,网络协议是为了提高测试的效率和沟通的有效性提出的为了保障通信的规则。在网络通信日益膨胀的年代,网络协议也必不可少,网络协议的基本要求是功能正确、互通性好和性能优越。协议测试最初的原型为软件测试,主要的分类有黑盒测试、白盒测试和灰盒测试。 [3]存在的问题播报编辑吞吐量是以太网测试的一项重要指标。很多工程师认为以太网交换吞吐量应该为其线速率,即100%流量下不能出现丢包,并且认为以太网帧间隔IFG小于96bits是非法的。但在以太网交换吞吐量及丢包率测试中,经常在线速条件下长时间误码测试会出现少量的丢包,究其原因为以太网跨时钟域架构所导致的。 [4]工业以太网技术的迅速发展和应用的同时,伴随出现了大量的网络问题。根据西门子公司提供的统计数据,网络通信故障率占70%以上,网络设备故障率不足30%。网络故障导致系统停机后,故障诊断和定位所需的时间占系统停机总时间的80%以上,而维护措施所占时间不足20%。因此网络流量实时监控和分析是工业以太网发展 和应用中面临的重大问题,实时监控和分析工业以太网网络流量,及时发现和定位网络问题对提高整个系统的稳定运行起到了至关重要的作用。 [5]车载以太网播报编辑传统以太网协议由于采用的是载波监听多路访问及冲突检测技术。因此,在数据包延时、排序和可靠性上达不到车载网络实时性要求,所以,常见的车载局域网仍是基于CAN的实时现场总线协议。但随着汽车电子技术的爆发式发展,ECU数量不断增长,影音娱乐信号也纳入车内通信,这使得高实时、低带宽的传统车载总线开始不适应汽车电 子发展趋势。 [6]国际电子电气工程师协会(IEEE)经过长期研究在2016年批准了第一个车载以太网标准 “100BASE-T1”,其基于博通公司的BroadR.Reach 解决方案,在物理层用单对非屏蔽双绞线电缆,采用更加优化的扰码算法来减弱信号相关性增加实时性,可在车内提供100Mbps高实时带宽。 [6]高速以太网在汽车干扰环境下的通信质量是 需要重点考查的问题。特别对于100BASE.T1网络采用的是非屏蔽的电缆,更容易受到电流浪涌、电磁干扰的影响,导致其性能不稳定甚至功能失效。有基于以太网物理层的一致性测试方法,用于测试信号发射设备的回波损耗、定时抖动和最大输出跌落等性能;RFC2544标准提供了以太网时延、吞吐量和丢包率等主要性能指标的测试方法; 但这些常见方法都是基于传统以太网,不支持 100BASE-TI车载以太网,并且没有考虑到车载环境的干扰特征。 [6]工业以太网播报编辑工业以太网技术源自于以太网技术,但是其本身和普通的 以太网技术又存在着很大的差异和区别。工业以太网技术本身进行了适应性方面的调整,同时结合工业生产安全性和稳定性方面的需求,增加了相应的控制应用功能,提出了符合特定工业应用场所需求的相应的解决方案。工业以太网技术在实际应用中,能够满足工业生产高效性、稳定性、实时性、经济性、智能性、扩展性等多方面的需求,可以真正延伸到实际企业生产过程中现场设备的控制层面,并结合其技术应用的特点,给予实际企业工业生产过程的全方位控制和管理,是一种非常重要的技术手段。 [7]工业以太网技术应用的优势分析如下:第一,工业以太网技术具有广泛的应用范围。以太网技术本身作为重要的基础性计算机网络技术,其本身能够兼容多种不同的编程语言。例如,常见的JAVA、C++等编程语言都支持以太网方面的应用开发。 [7]第二,工业以太网技术具有良好的应用经济性。相对于以往传统工业生产当中现场总线网卡的基础设施方面的投入,以太网的网卡成本方面具有十分显著的优势。在当前以太网技术不断发展的今天,整体以太网技术的设计、应用方面已经十分成熟。在具体技术开发方面,有着很多现有的资源和设计案例进行应用,这也进一步降低了系统的开发和推广成本,同时也让后续培训工作的开展变得更加有效率。可以说,经济性强、成本低廉、应用效率高、过渡短、方案成熟,这是工业以太网技术的一个显著优势特征。 [7]第三,工业以太网技术具有较高的通信速率。相对现场总线来说,工业以太网的通信速率较高,1Gb/s的技术应用也变得十分成熟。在当前不断增长的工业控制网络性能吞吐需求的前提下,这种速率上的优势十分明显,其能够更好地满足当前的带宽标准,是新时期现代工业生产网络工程的重要发展方向。相对上也控制网络来说,工业控制网络内部不同节点的实时数据了相对较少,但是其对于传输的实时性方面要求很高。以太网技术本身的网络负载方面有着显著的优势,这也让整个通信过程的实时性需求得到了更好的满足。良好的通信速率标准,可以进一步降低网络负荷,减少网络传输延时,从而最大限度规避忘了碰撞的概率,保障工业生产的安全性与可靠性。 [7]第四,工业以太网技术具有良好的共享能力。随着当前网络技术的不断发展和成熟化,整个互联网体系变得更加成熟,任何一个接入到网络当中的计算机,都可以实现对工业控制现场相关数据的浏览和调用,这对于远程管控应用来说具有良好的优势,同时这也超越了以往现场总线管理模式的便利性,是实现现代化工业生产管理的重要基础性依据。 [7]第五,工业以太网技术具有良好的发展空间。通过工业以太网技术的应用,整个工业网络控制系统本身会具备一个更加广阔的发展空间和前景。在后续技术改造和升级的过程中,以太网技术能够为其提供一个良好的基础平台,这种扩展性方面的优势相比于现场总线技术来说是十分明显的。与此同时,在当前人工智能等相关技术发展的环境下,网络通信质量和效率本身的标准更高,很多新通信协议的应用,这也需要工业以太网技术给予相应的支持。 [7]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000基础知识——以太网(Ethernet )-CSDN博客
>基础知识——以太网(Ethernet )-CSDN博客
基础知识——以太网(Ethernet )
季秊爱桃楸
已于 2023-07-15 13:45:51 修改
阅读量3.8k
收藏
36
点赞数
分类专栏:
网络路由
文章标签:
网络协议
于 2023-07-14 14:40:43 首次发布
原文链接:https://blog.csdn.net/weixin_40274679/article/details/105995323?ops_request_misc=&request_id=b97d66480b3a426d9509466504684f58&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~koosearch~default-2-105995323-null-null.268^v1^control&utm_t
版权
网络路由
专栏收录该内容
1 篇文章
1 订阅
订阅专栏
目录
以太网概述
以太网——标准和实施
以太网—— 第1层和第2层
逻辑链路控制——连接到上层
MAC——获取到介质的数据
以太网的物理实现
以太网——通过LAN的通信
以太网历史
以太网冲突管理
发展到 1Gbps 及以上速度
以太网帧
帧——封装数据包
以太网MAC 地址
十六进制计数和编址
另一个编址层
以太网单播、组播和广播
以太网MAC
以太网中的MAC
CSMA/CD – 过程
以太网定时
帧间隙和回退
以太网物理层
以太网物理层概述
10 和 和 100 Mbps 以太网
1000 Mbps 以太网
以太网—— 未来选择
集线器和交换机
传统以太网—— 使用集线器
以太网 ——使用交换机
交换机—— 选择性转发
地址解析协议 (ARP)
ARP 过程 – 将IP映射到MAC地址
ARP 过程—— 目的主机在本地网络外
ARP 过程 – 删除地址映射
ARP 广播 – 问题
以太网概述
以太网——标准和实施
1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。 1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。 以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。
以太网—— 第1层和第2层
以太网在第 1 层上涉及信号、在介质中传输的比特流、将信号放到介质上的物理组件以及各种拓扑,它在设备之间的通信中扮演主要角色。
数据链路子层极大地促进了技术兼容性和计算机通信。
(1)MAC 子层负责将要用于传送信息的物理组件,并且准备通过介质传输的数据。 (2)逻辑链路控制 (LLC) 子层保持通信过程所用物理设备的相对独立性。
逻辑链路控制——连接到上层
对于以太网,IEEE 802.2 标准规范 LLC 子层的功能,而 802.3 标准规范 MAC 子层和物理层的功能。
LLC 子层获取网络协议数据(通常是IPv4 数据包)并加入控制信息,帮助将数据包传送到目的节点。
第 2 层通过 LLC 与上层通信。
逻辑链路控制(LLC)
1.建立与上层的连接
2.将网络层数据包封装成帧
3.标识网络层协议
4.保持物理设备的相对独立性
MAC——获取到介质的数据
介质访问控制 (MAC) 是数据链路层以太网子层的下半层,由硬件(NIC)实现 以太网 MAC 子层主要有两项职责 (1)数据封装 (2)介质访问控制
数据封装:帧定界、编址、错误检测
介质访问控制:对于将帧放入介质中和从介质中取下帧实施控制、介质恢复
以太网的物理实现
以太网的成功离不开以下因素: (1)维护的简便性 (2)整合新技术的功能 (3)可靠性 (4)安装和升级成本 在当今的网络中,以太网使用UTP 铜缆和光缆通过集线器和交换机等中间设备连接网络设备。
以太网——通过LAN的通信
以太网历史
以太网技术基础最早起步于 1970 年,是在一个叫做 Alohanet 的计划中提出来的。 以太网第一个版本融入了一种称为 载波侦听多路访问/ 冲突检测 (CSMA/CD) 的介质访问方法。 CSMA/CD 负责管理多台设备通过一个共享物理介质通信时产生的问题。
以太网的早期版本使用同轴电缆在总线拓扑中连接计算机。 粗缆 (10BASE5) 细缆 (10BASE2) 最初的同轴粗缆和同轴细缆等物理介质被早期的 UTP 类电缆所取代。 物理拓扑也改为使用集线器的星型拓扑。
以太网冲突管理
(1)传统的以太网---半双工 基于共享的介质,每次只有一个站点能够成功发送。 随着更多的设备加入以太网,帧的冲突量大幅增加。
(2)当前的以太网---全双工 交换机可以隔离每个端口,只将帧发送到正确的目的地(如果目的地已知),而不是发送每个帧到每台设备,数据的流动因而得到了有效的控制。
发展到 1Gbps 及以上速度
一些设计和安装都很优秀的现代网络,其设备和电缆可能只需要略加升级,便能以更高的速度运行。这种功能具有降低网络总拥有成本的优点。
在以太网中使用光缆后,电缆连接距离大幅延长,使 LAN 与 WAN 之间的差异没那么明显了。 以太网最初局限于单一建筑物中的 LAN 电缆系统,后来扩展到建筑物之间,而现在可以覆盖一个城市,称之为城域网 (MAN)。
以太网帧
帧——封装数据包
以太网帧结构向第 3 层 PDU 添加帧头和帧尾来封装所发送的报文。 以太网帧有两种样式:IEEE 802.3(原始)和修订后的 IEEE 802.3(Ethernet)。
“前导码”(7 个字节)和“帧首定界符 (SFD)”(1 个字节)字段用于同步发送设备与接收设备。
“目的 MAC 地址”字段(6 个字节)是预定接收方的标识符。
“源 MAC 地址”字段(6 个字节)标识帧的源网卡或接口。
“长度/类型”字段(2 个字节)定义帧的数据字段的准确长度。
“数据”和“填充位”字段(46 - 1500 个字节)包含来自较高层次的封装数据(一般是第 3 层 PDU 或更常见的 IPv4 数据包)。
“帧校验序列 (FCS)”字段(4 个字节)用于检测帧中的错误。它使用循环冗余校验(CRC)。发送设备在帧的 FCS 字段中包含 CRC 的结果。
以太网MAC 地址
为协助确定以太网中的源地址和目的地址,创建了称为介质访问控制 (MAC) 地址的唯一标识符。 MAC 编址作为第 2 层 PDU 的一部分添加上去。 以太网 MAC 地址是一种表示为 12 个十六进制数字的 48 位二进制值。
IEEE 要求厂商遵守两条简单的规定: 分配给网卡或其它以太网设备的所有 MAC 地址都必须使用厂商分配的 OUI 作为前 3个字节。 OUI 相同的所有 MAC 地址的最后 3 个字节必须是唯一的值(厂商代码或序列号)。 MAC 地址通常称为烧录地址 (BIA),因为它被烧录到网卡的 ROM(只读存储器)中。
十六进制计数和编址
十六进制 ("Hex") 是以 16 为基数的计数系统使用数字 0 到 9 和字母 A 到 F。 十六进制通常以 0x 前导的文本值(如 0x73)或 16 为下标的值表示。
十六进制用于表示以太网 MAC 地址和 IP V6 地址。. 你已经在 Wireshark 的 Packets Byte(数据包字节)窗格见过十六进制,在那里十六进制用于表示帧和数据包中的二进制值。
另一个编址层
OSI 数据链路层(第 2 层)物理编址,是作为以太网 MAC 地址实现的,用于通过本地介质传输帧。 IPv4 地址等网络层(第 3 层)地址普遍存在的源和目的端都理解的逻辑编址。.
以太网单播、组播和广播
在以太网中,第 2 层单播、组播和广播通信会使用不同的 MAC 地址。 单播 MAC 地址是帧从一台发送设备发送到一台目的设备时使用的唯一地址。
发送广播时,数据包以主机部分全部为一 (1) 的地址作为目的 IP 地址。这种地址计数法表示本地网络(广播域)中的所有主机都将接收和处理该数据包。 许多网络协议,如动态主机配臵协议 (DHCP) 和地址解析协议 (ARP) 等,都使用广播。
组播地址允许源设备向一组设备发送数据包。 属于某一组播组的设备都被分配了该组播组 IP 地址。组播地址的范围为 224.0.0.0到 239.255.255.255。
以太网MAC
以太网中的MAC
以太网使用载波侦听多路访问/冲突检测 (CSMA/CD) 来检测和处理冲突,并管理通信的恢复。 设备可以确定能够发送的时间。当设备检测到没有其它计算机在传送帧或载波信号时,就会发送其要发送的内容。
CSMA/CD – 过程
载波侦听---在 CSMA/CD 访问方法中,要发送报文的所有网络设 备在发送之前必须侦听。多路访问---如果设备之间的距离导致一台设备的信号延时,则另一台设备可能没有检测到信号,从而也开始发送。 冲突检测---当设备处于侦听模式时,可以检测共享介质中发生的冲突。 堵塞信号和随机回退---发送设备检测到冲突之后,将发出堵塞信号。这种堵塞信号用于通知其它设备发生了冲突,以便它们调用回退算法。回退算法将使所有设备在随机时间内停止发送,以让冲突消除。
载波侦听多路访问/冲突检测 (CSMA/CD)
1.在传输之前侦听——监控介质中是否有流量
2.在传输之前侦听——检测到载波信号
3.等待指定的时间——信号通过。稍后重试
4.在传输之前侦听——监控介质中是否有流量
5.未检测到载波信号——计算机传输
6.在传输之前侦听——监控介质中是否有流量
7.未检测到载波信号——计算机传输
8.发送冲突
9.发出堵塞信号
10.回退定时器——稍后重试
如图所示,集线器互连成一个称为“扩展星型”的物理拓扑。扩展星型可以极大地扩展冲突域。 通过一台集线器或一系列直接相连的集线器访问公共介质的相连设备称为冲突域。冲突域也称为网段。 集线器和中继器因此会影响冲突域大小的增长。
以太网定时
发送的电信号需要一定的时间(延时)传播(传送)到电缆。信号路径中的每台集线器或中继器在将比特从一个端口转发到下一个端口时,都会增加延时时间。 这种累加的延时将会增大冲突发生的机率,因为侦听节点可能会在集线器或中继器处理报文时跳变成发送信号。
吞吐量速度为 10 Mbps 及以下的以太网通信是异步通信。这种环境下的异步通信意味着,每台接收设备将使用 8 个字节的定时信息来使接收电路与传入的数据同步,然后丢弃这 8 个字节。 吞吐量为 100 Mbps 及更高的以太网通信是同步通信。这种环境下的同步通信表示不需要定时信息。但是,由于兼容性的原因“前导码”和“帧首定界符 (SFD)”字段仍然存在。
不管介质速度如何,将比特发送到介质并在介质上侦听到它都需要一定的时间。这段时间称为比特时间。 实际计算的碰撞槽时间刚好比在冲突域的最远两点之间发送所需的理论时间长,与另一个时间最近的发送发生冲突,然后让冲突碎片返回发送站点而被检测到。
帧间隙和回退
以太网标准要求两个非冲突帧之间有最小的间隙。这样,介质在发送上一个帧后将获得稳定的时间,设备也获得了处理帧的时间。 此时间称为帧间隙,其长度是从一个帧的 FCS 字段最后一位到下一个帧的“前导码”第一位。
只要一检测到冲突,发送设备就会发送一个 32 位“堵塞”信号以强调该冲突。这可确保 LAN 中的所有设备都能检测到冲突。
回退定时:冲突发生后,所有设备都让电缆变成空闲(各自等待一个完整的帧间隙),发送有冲突的设备必须再等待一段时间,然后才可以重新发送冲突的帧,这段等待时间会逐渐增长。
以太网物理层
以太网物理层概述
以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义 了四种数据速率: (1)10 Mbps - 10Base-T 以太网 (2)100 Mbps - 快速以太网 (3)1000 Mbps - 千兆以太网 (4)10 Gbps - 万兆以太网
10 和 和 100 Mbps 以太网
主要的 10 Mbps 以太网包括: (1)使用同轴粗缆的 10BASE5 (2)使用同轴细缆的 10BASE2 (3)使用 3 类/5 类非屏蔽双绞线电缆的 10BASE-T
100 Mbps 以太网也称为快速以太网,可以使用双绞线铜缆或光纤介质来实现。最常见的 100 Mbps 以太网有: (1)使用 5 类或更高规格 UTP 电缆的 100BASE-TX (2)使用光缆的 100BASE-FX
1000 Mbps 以太网
千兆以太网标准的开发产生了 UTP 铜缆、单模光缆和多模光缆的规格。 1000BASE-T 以太网使用全部四对 5 类或更高规格的 UTP 电缆提供全双工发送。
与 UTP 相比,光纤千兆以太网 - 1000BASE-SX 和 1000BASE-LX 有以下优势:无杂信、体积小,并且无需中继的距离远,带宽高。
以太网—— 未来选择
IEEE 802.3ae 标准经过改编,纳入了 10 Gbps - 通过光缆进行的全双工发送。 万兆以太网 (10GbE) 在不断发展,不仅用于 LAN,而且用于 WAN 和 MAN。 千兆以太网现已得到广泛采用,万兆产品也在不断增加,但 IEEE 和万兆以太网联盟仍未继续研究 40、100 甚至 160-Gbps 的标准。
集线器和交换机
传统以太网—— 使用集线器
传统以太网使用集线器来连接 LAN 网段中的节点。集线器不执行任何类型的通信过滤,而是将所有比特转发到其连接的每台设备。
以太网 ——使用交换机
交换机可以将 LAN 细分为多个单独的冲突域,其每个端口都代表一个单独的冲突域,为该端口连接的节点提供完全的介质带宽。
在所有节点直接连接到交换机的 LAN 中,网络的吞吐量大幅增加。这种增加主要缘于三个原因: (1)每个端口有专用的带宽 (2)没有冲突的环境 (3)全双工操作
交换机—— 选择性转发
以太网交换机选择性地将个别帧从接收端口转发到连接目的节点的端口。 交换机维护着一个表,称为MAC 表。该表将目的 MAC 地址与用于连接节点的端口进行比对。
以太网 LAN 交换机采用五种基本操作来实现其用途: 获取、过期、泛洪、选择性转发、过滤
地址解析协议 (ARP)
ARP 过程 – 将IP映射到MAC地址
ARP 协议具有两项基本功能: (1)将 IPv4 地址解析为 MAC 地址;(2)维护映射的缓存
具体的ARP转发过程可以看我之前的文章《网络基础知识之ARP协议》
ARP 过程—— 目的主机在本地网络外
如果目的 IPv4 主机不在本地网络上,则源节点需要将帧传送到作为网关的路由器接口,或用于到达该目的地的下一跳。
源节点将使用网关的 MAC 地址作为帧(其中含有发往其它网络上主机的 IPv4 数据包)的目的地址。
使用 ARP 代理时,就好像路由器接口是具有 ARP 请求所请求的 IPv4 地址的主机一样。 另一种使用代理 ARP 的情况是:主机认为它已经直接连接到目的主机所在的逻辑网络。如果主机配臵了错误的掩码,通常会发生这种情况。 还有一种使用代理 ARP 的情况是主机没有配臵默认网关。代理 ARP 可以帮助网络中的设备到达远程子网,而无需配臵路由或默认网关。
ARP 过程 – 删除地址映射
对于每台设备,ARP 缓存定时器将会删除在指定时间内未使用的 ARP 条目。具体时间取决于设备及其操作系统。
ARP 广播 – 问题
介质开销 安全性--ARP 欺骗/ ARP 毒化
优惠劵
季秊爱桃楸
关注
关注
0
点赞
踩
36
收藏
觉得还不错?
一键收藏
知道了
0
评论
基础知识——以太网(Ethernet )
1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义了四种数据速率:(1)10 Mbps - 10Base-T 以太网(2)100 Mbps - 快速以太网。
复制链接
扫一扫
专栏目录
以太网是什么?看完明白了【史上最详细介绍】
xiaomanong2的博客
05-12
3万+
以太网是什么?
以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。
以太网是应用最广泛的
整理加解释:以太网、快速以太网、千兆以太网和万兆以太网分别的概念和区分 大详解
publicstaticfinal的博客
07-23
6685
**
以太网是什么
**
以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。
以太网是应用最
参与评论
您还未登录,请先
登录
后发表或查看评论
什么是以太网?为什么要叫做“以太”网?
lifengxun20121019的专栏
12-24
8533
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器
FPGA实现以太网(一)——以太网简介
m0_52889836的博客
12-28
1046
以太网(Ethernet)是当今现有局域网采用的最通用的通信协议标准, 该标准定义了在局域网中采用的电缆类型和信号处理方法。以太网凭借其成本低、通信速率高、抗干扰性强等优点被广泛应用在网络远程监控、 交换机、工业自动化等对通信速率要求较高的场合。以太网是一种产生较早,使用相当广泛的,被电气与电子工程师协会( IEEE)所采纳作为的标准。以太网的分类有标准以太网(10Mbit/s)、 快速以太网(100Mbit/s)和千兆以太网( 1000Mbit/s)。
以太网Ethernet通信协议
STATEABC的博客
08-07
7446
以太网协议(Ethernet Protocol)是一种广泛应用于局域网(LAN)和广域网(WAN)的计算机网络通信协议。它是一种基于共享介质的局域网技术,最早由Xerox、Intel和Digital Equipment Corporation(DEC)于1970年代开发,并在1980年代初由IEEE标准化为IEEE 802.3。以太网根据最大传输速率的不同可以分为标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)、千兆以太网 (1000Mbit/s)和万兆以太网(10Gbit/s)。
计算机网络基础——以太网
03-24
西门子公司对于以太网的视频教程.详细的介绍了以太网和网络基础和深入知识,可以值得看一看。
以太网(Ethernet)相关基础知识
Already8888的博客
05-17
1万+
以太网Ethernet
•Ethernet Cabling
•Manchester Encoding
•The Ethernet MAC Sublayer Protocol
•The Binary Exponential Backoff Algorithm
•Ethernet Performance
•Switched Ethernet
以太网电缆
从上到下,分别是粗同轴电缆、细同轴电缆、双绞线、光纤
术语10base5的含义是:它使用基带信号运行在10Mbps的...
接口协议(四):以太网(Ethernet)学习(一):协议
热门推荐
qq_40483920的博客
08-27
4万+
目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议
因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。
一、以太网
以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。
最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子
计算机网络---以太网
qq_63976098的博客
09-16
1499
以太网;以太网传输介质与拓扑结构的发展;10BASE-T以太网;适配器&MAC地址;高速以太网
以太网是什么要怎么连接电脑
qq_29508575的博客
06-24
1万+
以太网其实就是我们平时说的网络,它是属于一种计算机局域网的技术,也就是我们平时电脑连接的宽带网络。想要依靠电脑获取互联网信息,就必须给电脑连接以太网,那么电脑要怎么连接以太网呢?这个过程很简单。在这里1、在把电脑打开后,点击设置图标把电脑设置打开。2、在Windows设置中找到 网络和internet 点击进入。3、在左侧找到以太网点击,然后选择网络连接就行了,如果电脑是初次连接以太网的话,需要找到你的宽带并输入密码进行连接。4、如果需要连接无线网络也就是wifi的话,就点击WLAN,...
什么是以太网
digitalkee的博客
03-26
1万+
版本1:
一般都是以集线器或交换机作为核心节点,再从集线器或交换机拉很多根网线出来,把各台主机连接到这个核心节点上。
以太网(Ethernet)是最广泛安装的局域网技术。正如现在在IEEE 802.3标准中指出的,以太网原来由Xerox开发,后来由Xerox, DEC和Intel共同开发的。以太网一般使用同轴电缆和特种双绞线。最通常的以太网系统是10BASE-T,它的传输速率可达10 Mbps。...
android 以太网 添加设置Ethernet
11-27
android在设置中添加以太网ethernet方法, 在可以是学习框架的一种好方法。
以太网基础知识.ppt
07-18
以太网原理,讲解以太网的发展史,是很好的入门资料,
10Mbps以太网Ethernet的几种形式分别介绍
10-01
本文将详细介绍10Mbps以太网Ethernet的几种形式,需要了解的朋友可以参考下
详细分析车载以太网基础知识
01-14
本文将从入门者的角度,讲解车载以太网中的重要知识。 01车载以太网的组成 车载以太网用于连接汽车内不同电气设备的一种网络,从而满足车载环境中一些特殊需求,它与传统以太网不尽相同,车载以太网主要...
SpringBoot +WebSocket应用
weixin_44612246的博客
03-11
1034
SpringBoot WebSocket SpringBoot项目快速实现WebSocket应用。
传输层_TCP&UDP
最新发布
bhbca的博客
03-15
597
应用层中调用这些系统接口,并没有将数据发送到网络中,而是向下交付到传输层协议,具体什么时候发送数据,由传输层根据一些策略进行数据的实际发送。传输层的主要功能就是数据的传输,包括如果数据丢失,重复,乱序,发送太快太慢等等一些数据传输可靠性问题。传输层就是根据用户的要求从而解决数据传输的问题。传输层的协议主要由TCP和UDP两种协议。TCP协议是可靠传输的,如果用户想要更可靠的传输就用TCP协议;如果用户追求效率,那么可以使用UDP协议,它是不可靠的,没有面向连接的,因此速度会比TCP协议快一些。
【计算机网络】集线器
weixin_65728773的博客
03-12
494
集线器(HUB)是一种计算机网络设备,用于连接多个计算机或其他网络设备并将它们组成一个局域网。通常是一个小型的硬件设备,包括多个网口,并使用电缆将这些网口连接到其他的网络设备上。
计算机网络——计算机网络体系结构
qq_67693066的博客
03-10
981
计算机网络体系结构
spe标准系列频率以太网协议
06-09
SPE (Single Pair Ethernet)是一种新兴的以太网标准,其标准系列包括了以下几个频率:
1. IEEE 802.3cg: 该标准规定了在10 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于工业控制和汽车应用等领域。
2. IEEE 802.3bw: 该标准规定了在100 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于车载应用和智能家居等领域。
3. IEEE 802.3bu: 该标准规定了在1 Gbit/s的速率下,SPE可以通过40米的单对电缆进行通信,适用于工业自动化、智能交通和医疗设备等领域。
4. IEEE 802.3bz: 该标准规定了在2.5 Gbit/s和5 Gbit/s的速率下,SPE可以通过100米的单对电缆进行通信,适用于数据中心、智能楼宇和数字家庭等领域。
以上标准系列频率的制定,使得SPE在不同的应用场景下都能够提供高速率、低成本、小型化和低功耗等优点,推动了SPE技术的快速发展和广泛应用。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
季秊爱桃楸
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
3
原创
31万+
周排名
154万+
总排名
2万+
访问
等级
146
积分
22
粉丝
12
获赞
0
评论
205
收藏
私信
关注
热门文章
车规级芯片IC等级及其特点
4146
基础知识——以太网(Ethernet )
3797
1、硬件--LDO参数解读、特性、参考设计
3361
车载以太网基础知识介绍(MAC/PHY/MII解释对比)
2639
晶振详解之测试
2063
分类专栏
智能座舱
网络路由
1篇
硬件设计
14篇
杂七杂八
1篇
大家在看
【力扣白嫖日记】1907.按分类统计薪水
309
qmsolve包绘制自由微观粒子波函数的时间演化
MATLAB学习笔记2:数组的运算
181
蓝桥杯进阶01——灯光闪烁与数码管计数同步实现
properties和yml配置文件
219
最新文章
车规级芯片IC等级及其特点
OSI七层模型介绍
车载以太网基础知识介绍(MAC/PHY/MII解释对比)
2023年1篇
2021年1篇
2020年15篇
目录
目录
分类专栏
智能座舱
网络路由
1篇
硬件设计
14篇
杂七杂八
1篇
目录
评论
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
以太网 - 维基百科,自由的百科全书
以太网 - 维基百科,自由的百科全书
跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页分类索引特色内容新闻动态最近更改随机条目资助维基百科
帮助
帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科
搜索
搜索
创建账号
登录
个人工具
创建账号 登录
未登录编辑者的页面 了解详情
贡献讨论
目录
移至侧栏
隐藏
序言
1历史
2概述
3CSMA/CD共享介质以太网
4以太网中继器和集线器
5桥接和交换
6类型
开关类型子章节
6.1早期的以太网
6.210Mbps乙太網
6.3100Mbps以太网(快速以太网)
6.41Gbps以太网
6.510Gbps以太网
6.6100Gbps以太网
7参考文献
8参見
9外部链接
开关目录
以太网
76种语言
AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБългарскиবাংলাBrezhonegBosanskiCatalàکوردیČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiVõroFrançaisGaeilgeGalegoગુજરાતીGaelgעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語Қазақшаಕನ್ನಡ한국어KurdîLatinaLëtzebuergeschLombardLietuviųLatviešuМакедонскиമലയാളംमराठीBahasa MelayuNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்తెలుగుไทยTagalogTürkçeУкраїнськаاردوTiếng Việt吴语ייִדיש粵語
编辑链接
条目讨论
不转换
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
阅读编辑查看历史
工具
工具
移至侧栏
隐藏
操作
阅读编辑查看历史
常规
链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目
打印/导出
下载为PDF打印页面
在其他项目中
维基共享资源
维基百科,自由的百科全书
電腦網路的類型
依覆盖范围排序列表
纳米网络
近場通訊(NFC)
藍牙
體域網
個人區域網絡(PAN)
无线个人网
局域网(LAN)
有线局域网
以太网
令牌环
光纤分布式数据接口
无线局域网(WLAN)
Wi-Fi
ZigBee
Thread
MMDS
SMDS
虚拟局域网(VLAN)
家庭网络(英语:Home network)(HAN)
存储区域网络(SAN)
园区网络(CAN)
骨幹網
城域网(MAN)
广域网(WAN)
异步传输模式
帧中继
同步数字体系(SDH)
企业专用网络
虛擬私人網路(VPN)
雲端(英语:Internet area network)
互联网
星际互联网(IPN)
查论编
「Ethernet」的各地常用名稱笔记本电脑上已插上网路线的以太网接口中国大陸以太网 臺灣乙太網路
以太网(英語:Ethernet)是一种计算机局域网技术。IEEE組織的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。
以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,將能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一來,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即載波多重存取/碰撞偵測)的总线技术。
历史[编辑]
以太网技术起源於施樂帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:區域计算机网络的分布式封包交换技术》的文章。
網際網路协议套組
應用層
BGP
DHCP
DNS
FTP
HTTP
HTTPS
IMAP
LDAP
MGCP(英语:Media Gateway Control Protocol)
MQTT
NNTP
NTP
POP
ONC/RPC
RTP
RTSP
SIP
SMTP
SNMP
Telnet
TLS/SSL
SSH
XMPP
更多...
傳輸層
TCP
UDP
DCCP
SCTP
RSVP
更多...
網路層
IP
IPv4
IPv6
ICMP
ICMPv6
ECN
IGMP
OSPF
IPsec
RIP
更多...
連結層
ARP
NDP
Tunnels
L2TP
PPP
MAC
Ethernet
DSL
ISDN
FDDI
更多...
查论编
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇[哪個/哪些?]与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。[來源請求]
概述[编辑]
1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。
以太网實作了网络上无线电系统多个节点发送信息的想法,每个节点必须取得电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有節點能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。
以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。
CSMA/CD共享介质以太网[编辑]
带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行動與狀態之間進行轉換:
开始 - 如果线路空闲,则启动传输,否则跳转到第4步。
发送 - 如果检测到冲突,继续发送数据直到达到最小回報时间(min echo receive interval)以確保所有其他转发器和终端检测到冲突,而後跳轉到第4步。
成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。
線路繁忙 - 持續等待直到线路空闲。
线路空闲 - 在尚未達到最大尝试次數之前,每隔一段随机时间转到第1步重新嘗試。
超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都透過一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延遲指数增长时间後再次嘗試。延遲的时间通过截斷二進位指數後移(英语:Exponential_backoff)(truncated binary exponential backoff)演算法来实现。
最初的以太网是采用同轴电缆来連接各个设备的。电脑透過一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一條简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是想发给其中的一个终端(destination),卻會使用廣播的形式,發送給線路上的所有電腦。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
以太网中继器和集线器[编辑]
在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。
因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以透過以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。
类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。
随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。
第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。
像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。
非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最後取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准線路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。
采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少封包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总傳輸量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、傳輸間隔、檔頭、檔尾和封裝上都是最小花費的情况。当网络负载过重时,冲突也常常会降低傳輸量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因衝突過多導致网络的负载在仅50%左右程度就滿載。为了在冲突严重降低傳輸量之前尽量提高网络的负载,通常会先做一些设定以避免類似情況發生。
桥接和交换[编辑]
尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。透過橋接器时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。透過记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。
早期的网桥要检测每一个数据包,因此當同时处理多个端口的时候,数据转发比Hub(中继器)來得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。
大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,雖然设备在半双工模式下運作時仍是共享介质的多節点网,但10BASE-T和以后的标准皆為全双工以太网,不再是共享介质系统。
交换机啟動后,一開始也和Hub一樣,转发所有数据到所有端口。接下来,当它記錄了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。
因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。
当只有简单设备(除Hub之外的设备)連接交换机端口時,整个网络可能處於全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。這時总带宽是鏈路的2倍,雖然雙方的頻寬相同,但没有发生冲突就意味着几乎能利用到100%的带宽。
交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备透過信号来协调要使用的速率和双工设置。然而,如果自动协商功能被關閉或者设备不支持,则双工设置必须透過自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多較低層級的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。
即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。
当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem透過详细的方法检测鏈路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致鏈路失效。解决方案為强制通讯端降低到电缆支持的速率。
类型[编辑]
除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。
以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。
很多以太网卡和交换设备都支持多速率,设备之间透過自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。
部分以太网类型[1]
速度
常用名称
非正式的IEEE标准名称
正式的IEEE标准名称
线缆类型
最大传输距离
10Mbps
以太网
10BASE-T
802.3
双绞线
100m
100Mbps
快速以太网
100BASE-T
802.3u
双绞线
100m
1Gbps
吉比特以太网
1000BASE-LX
802.3z
光纤
5000m
1Gbps
吉比特以太网
1000BASE-T
802.3ab
双绞线
100m
10Gbps
10吉比特以太网
10GBASE-T
802.3an
双绞线
100m
早期的以太网[编辑]
参见:兆比特以太网
施乐以太网(Xerox Ethernet,又稱「全錄乙太網」)──是乙太網的雛型。最初的2.94Mbit/s以太网僅在全錄公司裡內部使用。而在1982年,Xerox與DEC及Intel組成DIX聯盟,並共同發表了Ethernet Version 2(EV2)的規格,並將它投入商場市場,且被普遍使用。而EV2的網絡就是目前受IEEE承認的10BASE5。[2]
10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。
1BASE5 ──也稱為星型局域网,速率是1Mbit/s。在商业上很失败,但同時也是双绞线的第一次使用。
10Mbps乙太網[编辑]
10BASE-T電纜
参见:十兆以太网
10BASE5(又稱粗纜(Thick Ethernet)或黃色電纜)──最早實現10 Mbit/s以太網。早期IEEE標準,使用單根RG-11同軸電纜,最大距離為500米,並最多可以連接100台電腦的收發器,而纜線兩端必須接上50歐姆的終端電阻。接收端透過所謂的「插入式分接頭」插入電纜的內芯和屏蔽層。在電纜終結處使用N型連接器。儘管由於早期的大量布設,到現在還有一些系統在使用,這一標準實際上被10BASE2取代。
10BASE2(又稱細纜(Thin Ethernet)或模擬網路)── 10BASE5後的產品,使用RG-58同軸電纜,最長轉輸距離約200米(實際為185米),僅能連接30台計算機,計算機使用T型適配器連接到帶有BNC連接器的網卡,而線路兩頭需要50歐姆的終結器。雖然在能力、規格上不及10BASE5,但是因為其線材較細、佈線方便、成本也便宜,所以得到更廣泛的使用,淘汰了10BASE5。由於雙絞線的普及,它也被各式的雙絞線網絡取代。
StarLAN ──第一個雙絞線上實現的以太網路標準10 Mbit/s。後發展成10BASE-T。
10BASE-T ──使用3類雙絞線、4類雙絞線、5類雙絞線的4根線(兩對雙絞線)100米。以太網集線器或以太網交換機位於中間連接所有節點。
FOIRL ──光纖中繼器鏈路。光纖以太網路原始版本。
10BASE-F ── 10Mbps以太網光纖標準通稱,2公里。只有10BASE-FL應用比較廣泛。
10BASE-FL ── FOIRL標準一種升級。
10BASE-FB ──用於連接多個Hub或者交換機的骨幹網技術,已廢棄。
10BASE-FP ──無中繼被動星型網,沒有實際應用的案例。
100Mbps以太网(快速以太网)[编辑]
参见:百兆以太网
快速以太网(Fast Ethernet)為IEEE在1995年發表的網路標準,能提供達100Mbps的傳輸速度。[2]
100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。
100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。
100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。
100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。
100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。
100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。
苹果的千兆以太网络接口
1Gbps以太网[编辑]
参见:吉比特以太网
1000BASE-SX的光信號與電氣信號轉換器
1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。
1000BASE-SX -- 1 Gbit/s多模光纤(取決於頻率以及光纖半徑,使用多模光纖時最長距離在220M至550M之間)。[3]
1000BASE-LX -- 1 Gbit/s多模光纤(小於550M)、單模光纖(小於5000M)。[4]
1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案
1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案
1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案
1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。
10Gbps以太网[编辑]
参见:10吉比特乙太網路
新的万兆以太网标准包含7种不同类型,分別适用于局域网、城域网和广域网。目前使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。
10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。
10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。
10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。
10GBASE-LR和10GBASE-ER -- 透過单模光纤分别支持10公里和40公里
10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)
10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。
100Gbps以太网[编辑]
参见:100吉比特以太网
新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。目前使用附加标准IEEE 802.3ba。
40GBASE-KR4 -- 背板方案,最少距离1米。
40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。
40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。
40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。
100GBASE-ER4 -- 使用单模光纤,距离超过40公里。
参考文献[编辑]
^ Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.
^ 2.0 2.1 Internet協定觀念與實作ISBN 9577177069
^ IEEE 802.3-2008 Section 3 Table 38-2 p.109
^ IEEE 802.3-2008 Section 3 Table 38-6 p.111
参見[编辑]
5类双绞线
RJ45
Power over Ethernet
MII and PHY
网络唤醒
1G以太网
10G以太网
100G以太网
1000G以太网
虚拟局域网
生成树协议
通讯
Internet
以太网帧格式
外部链接[编辑]
IEEE 802.3 2002年标准(页面存档备份,存于互联网档案馆)
万兆以太网(页面存档备份,存于互联网档案馆)
以太网帧格式(页面存档备份,存于互联网档案馆)
万兆IP以太网白皮书
千兆以太网(1000BaseT)(页面存档备份,存于互联网档案馆)
查论编局域网技术之以太网家族速度
10Mbit/s
双绞线以太网
100Mbit/s
1Gbit/s
2.5和5Gbit/s
10Gbit/s
25和50Gbit/s(英语:25 Gigabit Ethernet)
40和100Gbit/s
200Gbit/s和400Gbit/s
常规
IEEE 802.3
乙太網路實體層(英语:Ethernet physical layer)
自动协商(英语:Autonegotiation)
以太网供电
以太类型
以太网联盟(英语:Ethernet Alliance)
流控制
帧
巨型帧
历史
CSMA/CD
StarLAN(英语:StarLAN)
10BROAD36(英语:10BROAD36)
10BASE-FB(英语:10BASE-FB)
10BASE-FL(英语:10BASE-FL)
10BASE5(英语:10BASE5)
10BASE2(英语:10BASE2)
100BaseVG(英语:100BaseVG)
LattisNet(英语:LattisNet)
长距离(英语:Long Reach Ethernet)
应用程序
音频(英语:Audio over Ethernet)
运营商(英语:Carrier Ethernet)
数据中心(英语:Data center bridging)
高能效以太网
第一英里(英语:Ethernet in the first mile)
10G-EPON(英语:10G-EPON)
工業以太網
以太网供电
同步(英语:Synchronous Ethernet)
收发器
MAU(英语:Medium Attachment Unit)
GBIC
SFP
XENPAK
X2
XFP
SFP+
QSFP(英语:QSFP)
CFP(英语:C Form-factor Pluggable)
接口
AUI(英语:Attachment Unit Interface)
MDI
MII
GMII
XGMII
XAUI
分类
维基共享
查论编網際網路存取有线网络
线缆(英语:Cable Internet access)
拨号
DOCSIS
DSL
以太网
FTTx
G.hn(英语:G.hn)
HD-PLC
HomePlug
HomePNA(英语:HomePNA)
IEEE 1901(英语:IEEE 1901)
ISDN
MoCA(英语:Multimedia over Coax Alliance)
PON
电力线
宽带
无线个人局域网
藍牙
Li-Fi
无线USB
无线局域网
Wi-Fi
无线广域网
DECT
EV-DO
GPRS
HSPA
HSPA+
iBurst(英语:iBurst)
LTE
MMDS
Muni Wi-Fi
WiMAX
WiBro
卫星上网
查论编IEEE標準当前标准
488
754
Revision(英语:IEEE 754 revision)
829
830
1003
1014-1987(英语:VMEbus)
1016
1076
1149.1
1164(英语:IEEE 1164)
1219
1233
1275(英语:Open Firmware)
1278(英语:Distributed Interactive Simulation)
1284(英语:IEEE 1284)
1355(英语:IEEE 1355)
1364
1394
1451(英语:IEEE 1451)
1471(英语:IEEE 1471)
1491
1516(英语:High-level architecture (simulation))
1541-2002
1547(英语:IEEE 1547)
1584(英语:IEEE 1584)
1588(英语:Precision Time Protocol)
1596(英语:Scalable Coherent Interface)
1603(英语:IEEE 1603)
1613(英语:IEEE 1613)
1667(英语:IEEE 1667)
1675(英语:IEEE 1675-2008)
1685(英语:IP-XACT)
1800
1801(英语:Unified Power Format)
1900(英语:DySPAN)
1901(英语:IEEE 1901)
1902(英语:RuBee)
11073(英语:ISO/IEEE 11073)
12207(英语:IEEE 12207)
2030(英语:IEEE 2030)
14764
16085
16326
42010(英语:ISO/IEC 42010)
802系列802.1
p
Q
Qat(英语:Stream Reservation Protocol)
Qay(英语:Provider Backbone Bridge Traffic Engineering)
X
ad
AE(英语:IEEE 802.1AE)
ag(英语:IEEE 802.1ag)
ah(英语:IEEE 802.1ah-2008)
ak(英语:Multiple Registration Protocol)
aq
ax
802.11
Legacy
a
b
d(英语:IEEE 802.11d-2001)
e(英语:IEEE 802.11e-2005)
f(英语:Inter-Access Point Protocol)
g
h(英语:IEEE 802.11h-2003)
i(英语:IEEE 802.11i-2004)
j(英语:IEEE 802.11j-2004)
k(英语:IEEE 802.11k-2008)
n (Wi-Fi 4)
p
r
s
u(英语:IEEE 802.11u)
v(英语:IEEE 802.11v)
w(英语:IEEE 802.11w-2009)
y(英语:IEEE 802.11y-2008)
ac (Wi-Fi 5)
ad (WiGig)
af
ah
ai
aj
aq
ax (Wi-Fi 6)
ay (WiGig 2)
be (Wi-Fi 7)
.2
.3
.4
.5
.6(英语:IEEE 802.6)
.7(英语:IEEE 802.7)
.8
.9(英语:IEEE 802.9)
.10(英语:IEEE 802.10)
.12(英语:IEEE 802.12)
.15
.15.4(英语:IEEE 802.15.4)
.15.4a(英语:IEEE 802.15.4a)
.16
.18(英语:IEEE 802.18)
.20(英语:IEEE 802.20)
.21(英语:IEEE 802.21)
.22建议标准
P1363(英语:IEEE P1363)
P1619
P1823(英语:Universal Power Adapter for Mobile Devices)
过时标准
754-1985(英语:IEEE 754-1985)
854-1987(英语:IEEE 854-1987)
另见
IEEE標準協會
Category:IEEE标准
查论编电子计算机基本部件输入设备
鍵盤
數字鍵盤
影像掃描器
显示卡
圖形處理器
麦克风
定点设备
数码绘图板
游戏控制器
光筆(英语:Light pen)
鼠标
光學
指点杆
触摸板
觸控式螢幕
轨迹球
盲文显示机
声卡
聲音處理器(英语:Sound chip)
摄像头
虛擬(英语:Softcam)
输出设备
顯示器
螢幕
盲文显示机
打印机
繪圖儀(英语:Plotter)
揚聲器(英语:Computer speakers)
声卡
显示卡
移动存储
磁碟組(英语:Disk pack)
软盘
光碟
CD
DVD
BD
闪存
記憶卡
闪存盘
机箱
中央处理器
微处理器
主板
記憶體
隨機存取
BIOS
數據存貯器
硬盘
固态硬盘
混合固态硬盘
電源供應器
開關模式電源
金屬氧化物半導體場效電晶體
功率
電壓調節模組
网卡
傳真數據機(英语:Fax modem)
擴充卡
接口(英语:Computer port (hardware))
以太网
FireWire
並列
序列
PS/2
USB
Thunderbolt
DisplayPort/HDMI/DVI/VGA
SATA
TRS
规范控制
AAT: 300266018
GND: 4127501-9
J9U: 987007555681905171
LCCN: sh85045087
取自“https://zh.wikipedia.org/w/index.php?title=以太网&oldid=81300354”
分类:乙太網路计算机总线隐藏分类:含有英語的條目自2014年12月有非常模棱两可或者十分空泛语句的条目自2024年2月有未列明来源语句的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目
本页面最后修订于2024年2月19日 (星期一) 10:07。
本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。
维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。
隐私政策
关于维基百科
免责声明
行为准则
开发者
统计
Cookie声明
手机版视图
开关有限宽度模式
Ethernet(以太网)基本工作原理 - 知乎
Ethernet(以太网)基本工作原理 - 知乎切换模式写文章登录/注册Ethernet(以太网)基本工作原理乐竹每天提醒自己,不要忘记梦想!以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)Ethernet 数据发送流程CMSA/CD的发送流程可以简单概况为4步:先听后发、边听边发、冲突停止、延迟重发。(1)载波侦听过程每个主机在发送数据帧之前,首先要侦听总线的【忙/闲】状态。Ethernet网卡的收发器一直在接收总线上的信号,如果总线上有其他主机发送的信号,那么曼彻斯特解码器的解码时钟一直有输出;如果总线上没有信号发送,那么曼彻斯特(Manchester)解码器的时钟输出为0。Manchester解码器是网卡上的一个组件,解码时钟会根据线路上的信号以曼彻斯特编码解码。曼彻斯特编码因此,Manchester解码器的时钟信号可以反映出总线的【忙/闲】状态。(2)冲突检测方法载波侦听并不能完全消除冲突。———————————————————————————————————————电磁波在同轴电缆中传播速度约为 2×108m/s,如果局域网中两个【相隔最远】主机A和B相距 1000m,那主机A向主机B发送一帧数据要经过。t=\frac{1000}{2\times10^{8}}=5\times10^{-6} s=5\mu s 主机A发送数据后,要经过t后,主机B才接收到这个数据帧。在这5μs的时间内,主机B不知道主机A已经发送数据,它就有可能也向主机A发送数据。出现这种情况,主机A和主机B的这次发送就发生【冲突】。———————————————————————————————————————比较极端的冲突是:主机A向主机B发送数据,当数据信号快要到达主机B时,主机B也发送了数据。等到冲突信号传送回主机A时,已经经过了两倍的传播延迟2t(t=D/V,D为总线传输介质的最大长度,V是电磁波在介质中的传播速度)。冲突的数据帧可以传遍整个缆段,缆段上的主机都可以检测到冲突。缆段被称为【冲突域】,如果超过2t的时间没有检测出冲突,则该主机已取得【总线访问权】,因此将 2t定义为【冲突窗口】。冲突窗口是连接在一个缆段上所有主机能检测到冲突发生的最短时间。由于Ethernet物理层协议规定了总线最大长度,电磁波在介质中的传播速度是确定的,因此冲突窗口的大小也是确定的。最小帧长度与总线长度、发送速率之间的关系———————————————————————————————————————为了保证主机在发送一帧的过程可以检测到冲突,就要求发送一个最短帧的时间要超过冲突窗口的时间。因为帧发送并不是一瞬间全部发送完成,发送延迟 t = 帧长度/发送速率,发送速率一般不会改变,因此要在发送的过程中能检测到冲突需要规定一个最小帧长度最短帧长度为 L_{min} ,主机发送速率为S,发送短帧所需的时间为 L_{min} / S ,冲突窗口的值为2D/V \frac{L_{min}}{S}\geq \frac{2D}{V} 所以可以根据总线长度、发送速率和电磁波传播速度估计最小帧长度。———————————————————————————————————————冲突是指总线上同时出现两个或两个以上的发送信号,它们叠加后的信号波形不等于任何一个主机输出的信号波形。冲突检测有两种方法:比较法 和 编码违例判决法。比较法:主机在发送帧的同时,将其发送信号波形与总线上接收到的信号波形进行比较(信号在总线上是双向传播的,比如主机A、B、C,B发送信号A与C都能接收到)。如果两个信号波形不一致,说明冲突发生。 编码违例判决法:检查从总线上接收的信号波形是否符合曼彻斯特编码规律,不符合则说明发生冲突。64B是Ethernet的最小帧长度:如果一个主机发送一个最小帧,或者一个帧的前64个字节没有检测到冲突,说明该主机已经取得总线发送权,冲突窗口期又称为争用期。发现冲突、停止发送如果主机在发送过程中检测到冲突,主机要进入停止发送,随机延迟后重发的流程。随机延迟重发的第一步是:发送冲突加强干扰序列,保证有足够的冲突持续时间,使局域网中的所有主机都能检测出冲突存在,并立即丢弃冲突帧,减少由于冲突浪费的时间,提高信道利用率。冲突加强干扰序列信号长度为32bit随机延迟重发Ethernet规定一个帧的最大重发次数为16。后退延迟算法是:截止二进制指数后退延迟———————————————————————————————————————算法可表示为: \tau =2 \cdot R \cdot a τ:重新发送所需的后退延迟时间。a:冲突窗口的值。R:随机数,以主机地址为初始值生成随机数R。k:k=min(n,10),如果重发次数n小于10,则k=n,n≥10,则k=10.———————————————————————————————————————后退延迟时间τ到达后,节点将查询判断总线忙、闲状态,重新发送,如果再次遇到冲突,则重发次数+1,如果重发次数超过16时,表示发送失败,放弃发送该帧。CSMA/CD方法被定义为一种随机争用型介质控制访问方法。Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别。———————————————————————————————————————Ethernet V2.0是在DEC、Intel(英特尔)、Xeror公司合作研究的,所以也称Ethernet V2.0帧结构为DIX帧结构(公司首字母)IEEE802.3标准对Ethernet帧结构也做出了规定,通常称之为 802.3帧———————————————————————————————————————(1)前导码 1. DIX帧的前8B是前导码,每个字节都是10101010。接收电路通过提取曼彻斯特编码的自含时钟,实现收发双方的比特同步。 说人话就是:编码时故意搞个特别的码在前面,通过长度告知解码器后面有货送来,注意接收。 通过前导码就可判断信号是有用信号还是干扰信号,否则忽略不解码。 2. 802.3帧的前导码,每个字节都是10101010。但是有一个10101011的帧前定界符。前56位(7B×8)前导码是为了保证在接收【目的地址】时,已经进入【稳定接收状态(识别出这个是有用信号)】在62位1010…1010比特序列后出现两个11,两个11后就是Ethernet帧的目的地址字段。 3. 前导码只是为了实现收发双方的比特同步与帧同步,在接收后不需要保留,也不计入帧头长度。(2)类型字段和长度字段 1. DIX帧的类型字段表示网络层使用的协议类型。——————————————————————————————————————— 例如:类型字段=0x0800表示网络层使用IPv4协议、类型字段=0x86DD表示网络层使用IPv6协议。——————————————————————————————————————— 2. Ethernet帧最小长度为64B,除去帧头(目的地址+源地址+源地址),数据字段最短为46B。数据字段最长为1500B,因此数据字段长度在46~1500B之间。 3. DIX帧没有长度字段,所以接收端等待物理线路上没有电平的跳变(帧发送结束),除去4B的校验字段,就能取出数据字段。(3)目的地址和源地址字段 1. 目的地址和源地址表示帧的接收节点和发送节点的硬件地址。 2. 硬件地址也叫物理地址、MAC地址、Ethernet地址。 3. 源地址必须是6B的MAC地址。 4. 目的地址可以是单播地址(发送给单一主机)、多播地址(发送给一部分主机)、广播地址(发送给所有主机)。(4)帧校验字段 1. 帧校验字段FCS( Frame Check Sequence)采用32位的CRC校验。 2. CRC校验范围:目的地址、源地址、长度、LLC(Logical Link Control:逻辑链路控制)数据等字段。Ethernet接收流程分析主机主要不发送数据帧就处于接收状态。帧目的地址检查: 1. 目的地址是单一主机的物理地址,并且是本主机地址—>接收。 2. 目的地址是组地址,并且本主机属于该组—>接收。 3. 目的地址是广播地址—>接收。 4. 如果以上3种目的地址都与本主机地址不匹配,丢弃该接收帧。帧接收: 1. CRC校验正确。 2. 帧长度正确。 3. 如果1、2都正确,将帧中的数据发送到网络层,否则报告”接收失败“进入帧结束状态。帧校验: 1. CRC校验正确,但是帧长度不对,则报告“帧长度错”。 2. 如果校验出错,判断接收帧是不是8bit的整数倍(字段长度的单位是字节,1B=8bit,接收帧长度正常的话肯定是8bit的整数倍)☆ 如果不是8bit的整数倍,则报告“帧比特出错”。☆ 如果没有发现比特丢失或者比特位对位错,则报告“帧校验错”。 3. 进入结束状态。帧间最小间隔 1. 为保证网卡能正确、连续的处理接收帧,要规定一个帧间最小间隔 (网卡处理接收帧要时间、虽然很短) 2. 规定Ethernet帧的最小间隔为9.6μsEthernet网卡网卡由三部分组成:网卡与传输介质的接口(RJ45)、Ethernet数据链路控制器、网卡与主机的接口(主板的I/O扩展槽)。Ethernet数据链路控制器的功能:实现发送数据编码、接收数据解码、CRC产生与校验、曼彻斯特编码与解码、CSMA/CD介质访问控制。网卡的物理地址写入网卡的只读存储器中,不会与世界上任何一台其他的计算机重复。编辑于 2022-08-10 18:41Ethernet以太网(Ethernet)工作原理赞同 194 条评论分享喜欢收藏申请
关于 RJ45 电缆您需要了解的一切:连接器、接口和以太网 - AscentOptics 博客
关于 RJ45 电缆您需要了解的一切:连接器、接口和以太网 - AscentOptics 博客
产品中心
产品中心
产品中心
光模块
直连铜缆/直连光缆
波分复用设备
子配件
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
应用中心
应用中心
应用中心
数据中心
无线网络
存储网络
接入网
传输网络
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
新闻事件
新闻事件
新闻事件
行业新闻
公司新闻
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
关于我们
关于我们
关于我们
关于我们
公司简介
企业文化
证书荣誉
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
联系我们
联系我们
联系我们
联系我们
留言板
人才招聘
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
支持
支持
支持
下载中心
条款政策
常见问题
视频中心
需要帮助吗?
服务网点查询
查看所有产品类别
满意度调查
订货咨询
博客
200G CFP2
200G QSFP56
200G QSFP28-DD
English
简体中文
Français
Deutsch
Italiano
Русский язык
Español
Português
Nederlands
Ελληνικά
日本語
한국어
العربية
हिन्दी
Türkçe
Bahasa Indonesia
Tiếng Việt
ไทย
বাংলা
فارسی
Polski
Inquiry Cart
产品中心
Optical Transceivers
1.6T Transceivers
- 1.6T OSFP-XD
200G 400G 800G Transceivers
- 200G QSFP56
- 200G QSFP28-DD
- 400G QSFP56-DD
- 400G OSFP
- 400G QSFP112
- 800G QSFP112-DD
- 800G OSFP
- 800G QSFP-DD800 (200G per line)
- 800G OSFP (200G per line)
LPO Transceivers
- 400G LPO QSFP112
- 800G LPO QSFP-DD800
- 800G LPO OSFP
Coherent Transceivers
- CFP DCO
- CFP2 DCO
- QSFP-DD DCO
- OSFP DCO
- 100G QSFP28 DCO
40G 100G Transceivers
- 100G QSFP28
- 100G QSFP28 Single Lambda
- 100G SFP56-DD
- 100G CFP
- 100G CFP2
- 40G QSFP+
25G 50G Transceivers
- 25G SFP28
- 50G SFP56
- 50G QSFP28
Fiber Channel Transceivers
- 4G SFP
- 8G SFP
- 16G SFP
- 32G SFP
- 64G SFP56
- 128G SFP112
10G Transceivers
- 10G SFP+
- 10G XFP
- 10G X2
- 10G XENPAK
100M-2.5G Transeivers
- SFP Transcivers
- GBIC Transceivers
PON Transceivers
- EPON Transceivers
- GPON Transceivers
- 10G EPON Transceivers
- XGPON Transceivers
- XGSPON Transceivers
DAC /AOC
10G DAC AOC
- 10G SFP+ DAC
- 10G SFP+ AOC
- 10G SFP+ to XFP DAC
25G DAC AOC
- 25G SFP28 DAC
- 25G SFP28 AOC
40G 56G DAC AOC
- 40G QSFP+ DAC
- 40G QSFP+ Breakout DAC
- 40G QSFP+ AOC
- 40G QSFP+ Breakout AOC
- 56G QSFP+ DAC
- 56G QSFP+ AOC
50G DAC AOC
- 50G SFP56 DAC
- 50G SFP56 AOC
- 50G QSFP28 DAC
- 50G QSFP28 Breakout DAC
- 50G DSFP DAC
- 50G DSFP Breakout DAC
100G DAC AOC
- 100G QSFP28 DAC
- 100G QSFP28 Breakout DAC
- 100G QSFP28 AOC
- 100G QSFP28 Breakout AOC
- 100G DSFP DAC
- 100G DSFP AOC
- 100G SFP-DD DAC
- 100G SFP-DD AOC
200G DAC AOC
- 200G QSFP56 DAC
- 200G QSFP56 Breakout DAC
- 200G QSFP28-DD DAC
- 200G QSFP28-DD Breakout DAC
- 200G QSFP56 ACC
- 200G QSFP56 AOC
- 200G QSFP56 Breakout AOC
- 200G QSFP28-DD AOC
- 200G QSFP28-DD Breakout AOC
400G DAC AOC
- 400G QSFP56-DD DAC
- 400G QSFP56-DD Breakout DAC
- 400G QSFP56-DD AOC
- 400G QSFP56-DD Breakout AOC
- 400G OSFP DAC
- 400G OSFP AOC
- 400G QSFP112 DAC
- 400G QSFP112 AOC
- 400G OSFP Breakout DAC
- 400G OSFP Breakout AOC
- 400G AEC
800G DAC AOC
- 800G QSFP112-DD DAC
- 800G QSFP112-DD AOC
- 800G OSFP DAC
- 800G OSFP AOC
- 800G OSFP Breakout DAC
- 800G OSFP ACC
WDM MUX DEMUX
Chassis
CWDM MUX DEMUX
CWDM OADM
DWDM MUX DEMUX
DWDM OADM
Sub Accessories
EEPROM Programmer
Converter Modules
Loopback Modules
应用中心
数据中心
无线网络
存储网络
接入网
传输网络
新闻事件
行业新闻
公司新闻
关于我们
关于我们
公司简介
企业文化
证书荣誉
联系我们
联系我们
留言板
人才招聘
支持
下载中心
条款政策
常见问题
视频中心
博客
Inquiry Cart
切换语言
返回
选择语言
English
简体中文
Français
Deutsch
Italiano
Русский язык
Español
Português
Nederlands
Ελληνικά
日本語
한국어
العربية
हिन्दी
Türkçe
Bahasa Indonesia
Tiếng Việt
ไทย
বাংলা
فارسی
Polski
文章
首页 -
新闻
关于 RJ45 电缆您需要了解的一切:连接器、接口和以太网
2023 年 9 月 28 日
RJ45 电缆和连接器是互联世界的无名英雄,可实现跨庞大网络的无缝通信和数据传输。 本指南旨在揭开 RJ45 电缆的神秘面纱,探索从其结构和连接器类型到其在以太网接口中的作用的所有内容。 无论您是网络新手还是需要复习的 IT 老手,以下都是您需要了解的有关 RJ45 电缆的信息。
内容
隐藏
1
什么是 RJ45 电缆?
2
RJ45连接器
2.1
RJ45 连接器概述
2.2
RJ45 连接器引脚分配和颜色代码
2.3
RJ45 连接器类型
2.3.1
标准 RJ45 连接器
2.3.2
屏蔽 RJ45 连接器
3
RJ45 电缆类型
3.1
RJ45 电缆概述
3.2
Cat5e 与 Cat6 电缆
3.2.1
超五类电缆
3.2.2
六类电缆
3.3
屏蔽电缆与非屏蔽电缆
3.3.1
屏蔽线
3.3.2
非屏蔽电缆
4
RJ45接口
4.1
什么是 RJ45 接口?
4.2
以太网连接中的 RJ45 接口
4.3
常见的RJ45接口:8P8C和RJ11
5
RJ45电缆的应用
5.1
使用 RJ45 电缆进行以太网连接
5.2
RJ45电缆的其他应用
6
结论
7
常见问题解答(FAQ)
7.1
问:什么是 RJ45 电缆?
7.2
问:RJ45 和以太网有什么区别?
7.3
问:RJ45 电缆的颜色代码是什么?
7.4
问:RJ45 电缆有哪些不同的应用?
7.5
问:RJ45和RJ11有什么区别?
7.6
问:跳线和以太网电缆有什么区别?
7.7
问:六类和七类以太网电缆有什么区别?
7.8
问:什么是RJ45端口?
7.9
问:哪里可以买到 RJ45 电缆?
7.10
问:RJ45 电缆可以支持的最大距离是多少?
8
推荐阅读
什么是 RJ45 电缆?
RJ45电缆RJ45 电缆也称为以太网电缆,是一种用于有线网络的网络硬件。 它为家庭和企业网络提供标准连接,促进不同设备之间的数据传输。 “RJ45”这个名称代表“Registered Jack 45”,源自定义连接器及其接线的电信标准。 这些电缆广泛用于连接局域网 (LAN) 中的计算机、路由器和交换机等设备,提供可靠、高速的互联网访问。
RJ45连接器
RJ45 连接器有时称为 8P8C(8 位、8 触点)连接器,是与以太网电缆一起使用的紧凑型方形接口。 它们在建立有线网络连接方面发挥着关键作用,充当电缆和设备之间的主要接触点。
RJ45 连接器概述
RJ45 连接器的特点是 8 针设计,与以太网电缆内的八根电线对齐。 这些引脚中的每一个都对应于特定的电线颜色,形成了对连接器操作至关重要的颜色编码接线布置的基础。
RJ45 连接器引脚分配和颜色代码
RJ45 连接器中的引脚排列或引脚排列遵循标准化颜色代码,称为 T568A 或 T568B。 当连接器的卡舌面朝下并且电缆远离您时,T568A 配置遵循以下从左到右的颜色顺序:绿白、绿色、橙白、蓝色、蓝白、橙色、棕白、棕色的。 T568B 配置类似,但交换了绿色和橙色对的位置。
RJ45 连接器类型
RJ45连接器主要有两种类型:标准型和屏蔽型。
标准 RJ45 连接器
标准 RJ45 连接器是最常见的连接器类型,存在于大多数以太网电缆中。 它们重量轻且易于安装,使其成为家庭或小型办公室网络的经济选择。
屏蔽 RJ45 连接器
屏蔽 RJ45 连接器专门设计用于可能存在高度电磁干扰 (EMI) 的环境。 它们具有金属屏蔽,有助于保护通过电缆传输的数据信号,确保不间断的网络性能。
每种类型的 RJ45 连接器都有独特的用途,两者之间的选择很大程度上取决于网络设置的具体要求。
RJ45 电缆类型
RJ45 电缆 有多种类型,每种类型都旨在满足特定的网络要求。 您会遇到的两种最常见的类别是 Cat5e 和 Cat6 电缆。
RJ45 电缆概述
RJ45 电缆在有线网络中至关重要,可连接各种设备以实现平稳、无缝的数据传输。 每种类型的 RJ45 电缆代表不同级别的网络性能、数据传输速度和工作频率。 这种多样性可以在从住宅到企业环境的不同环境中优化性能。
Cat5e 与 Cat6 电缆
Cat5e 和 Cat6 电缆是 RJ45 系列中最常用的两种类型。
超五类电缆
Cat5e 电缆或“5 类增强型”电缆旨在减少相邻电线的干扰。 它们可以支持高达 1000 Mbps 的速度(也称为千兆位以太网),传输距离可达 100 米。
六类电缆
Cat6 电缆提供更高的性能、更低的串扰、更高的数据传输速率(高达 10 Gbps)和更高的频率(高达 250 MHz)。 然而,10 Gbps 的速度仅限于 55 米。 对于高于此值的运行,Cat6 电缆将恢复为 1 Gbps,与 Cat5e 相同。
屏蔽电缆与非屏蔽电缆
iSCSI 综合指南:了解它的工作原理及其优点作者:AscentOptics2023 年 9 月 28 日根据其结构,RJ45 电缆还可分为屏蔽型和非屏蔽型。
屏蔽线
屏蔽电缆包含导电材料层,可减少电磁干扰、防止数据丢失并优化网络性能。 它们非常适合电子噪音较大的环境。
非屏蔽电缆
另一方面,非屏蔽电缆不包含此保护层。 它们更轻、更便宜且更易于使用,使其成为 EMI 不太受关注的家庭网络和小型办公室的热门选择。
在这些 RJ45 电缆类型之间进行选择很大程度上取决于网络环境的具体要求,每种电缆类型都有其独特的优势。
RJ45接口
RJ45 接口是物理插孔或端口,以太网电缆的 RJ45 连接器可插入计算机、路由器或交换机等设备。 这些接口允许设备连接到网络以进行数据传输和接收。 由于其方便的设计和高速数据传输能力,它们已成为有线网络的通用标准。
什么是 RJ45 接口?
RJ45 接口也称为以太网端口,可以通过其矩形形状和八针布局来识别,旨在容纳 RJ45 连接器。 该接口比传统电话插孔稍大,并配有固定夹,可确保连接牢固,降低意外断开的风险。 RJ45 接口的作用是提供数据信号的通路,从而实现网络设备之间的高效通信。
以太网连接中的 RJ45 接口
在以太网连接中,RJ45 接口是基础。 以太网是一种管理网络数据传输的协议,严重依赖 RJ45 接口来创建有线网络连接。 通过将 RJ45 电缆插入设备的 RJ45 接口,您可以建立高速以太网连接,非常适合需要大量带宽的任务,例如流视频、游戏或促进服务器操作。
常见的RJ45接口:8P8C和RJ11
8P8C(八位、八触点)接口是用于 RJ45 连接器的标准接口。 顾名思义,它具有八个位置和八个触点,与 RJ8 连接器的 45 针设计完美匹配。 此接口常见于计算机、路由器和其他网络设备上。
RJ11 接口虽然与 RJ45 类似,但明显较小,通常用于电话接线。 它具有六位、四触点 (6P4C) 配置。 虽然 RJ11 插头可以插入 RJ45 接口,但由于 RJ45 插头尺寸较大,反之则不然。 这是一个需要记住的重要区别,以避免对网络设备造成潜在损坏。
RJ45电缆的应用
RJ45 电缆主要因其用于在局域网 (LAN) 中创建以太网连接而闻名。 然而,它们的应用范围不仅仅限于此。
使用 RJ45 电缆进行以太网连接
RJ45 电缆最突出的应用是创建有线以太网连接。 当计算机、路由器、交换机和服务器等设备需要在网络内相互通信时,通常使用 RJ45 电缆。 以太网连接提供高速数据传输速率,使用 Cat10 电缆时高达 6 Gbps,使其适合带宽密集型任务,例如流式传输高清视频、在线游戏、VoIP 应用程序等。 它们的抗干扰性和长距离覆盖能力使其成为家庭、办公室和数据中心可靠网络连接的标准选择。
RJ45电缆的其他应用
除了以太网连接之外,RJ45 电缆还应用于电信领域。 例如,传统的固定电话通常使用 RJ11 连接器,该连接器较小,但可以插入 RJ45 接口。 在商业环境中,RJ45电缆用于控制台管理,允许网络管理员通过控制台端口管理路由器、交换机和防火墙。 此外,一些数字闭路电视系统使用 RJ45 电缆进行视频和电力传输。 本质上,只要需要快速、可靠的有线连接,就可以找到 RJ45 电缆。
结论
RJ45 电缆和接口是有线网络连接的骨干,有助于跨各种设备和服务的数据传输。 RJ5 电缆具有 Cat6e、Cat45、屏蔽和非屏蔽等多种类型,每种类型都适合特定的网络环境,为建立网络提供了灵活性和效率。 此外,它们的接口(主要是 8P8C 和 RJ11)作为通用标准,确保了各种设备的兼容性。 虽然主要集中在以太网连接,但它们的应用范围已扩展到电信、控制台管理,甚至数字视频传输。 随着技术的进步,RJ45 电缆在确保网络内快速、可靠和安全连接方面的相关性和多功能性仍然没有受到挑战。
常见问题解答(FAQ)
问:什么是 RJ45 电缆?
答:RJ45 电缆是一种标准化网络电缆,常用于以太网连接。 它使用称为 RJ45 的模块化连接器,具有 8 针,通常用于连接计算机、路由器和交换机等设备。
问:RJ45 和以太网有什么区别?
答:RJ45 是指电缆中使用的连接器,而以太网是指允许设备通过网络相互通信的网络协议。 RJ45 电缆通常用于以太网连接,但还有其他类型的电缆和连接器也可用于以太网网络。
问:RJ45 电缆的颜色代码是什么?
比较 RoCE、InfiniBand 和 TCP 网络:选择正确的高性能协议作者:AscentOptics2023 年 9 月 28 日答:RJ45 电缆的颜色代码用于确定电缆内部电线的正确顺序。 以太网电缆最常见的颜色代码是 T568B,它使用以下配色方案:橙白、橙色、绿白、蓝色、蓝白、绿色、棕白、棕色。 然而,还有另一种颜色代码称为 T568A,它使用稍微不同的电线排列。
问:RJ45 电缆有哪些不同的应用?
答:RJ45 电缆常用于网络中的各种应用。 它们连接计算机、路由器、交换机和调制解调器等设备来创建局域网 (LAN)。 RJ45 电缆连接自动化和其他行业中的语音和数据设备以及布线方案。
问:RJ45和RJ11有什么区别?
答:RJ45 和 RJ11 都是电信中使用的连接器类型,但它们具有不同的尺寸和引脚配置。 RJ45 连接器较大,有 8 针,而 RJ11 连接器较小,有 6 针。 RJ45 连接器通常用于以太网连接,而 RJ11 连接器用于电话连接。
问:跳线和以太网电缆有什么区别?
答:跳线是一种较短的电缆,用于连接网络机架内的设备或 配线架。 它通常用于在设备之间建立临时连接或修补。 另一方面,以太网电缆是较长的电缆,用于在网络中的设备之间建立永久连接。 以太网电缆通常用于连接计算机、路由器和交换机等设备。
问:六类和七类以太网电缆有什么区别?
答:六类和七类是不同的以太网电缆类别,具有不同的规格。 Cat6 电缆支持高达 7 Gbps 的数据传输速度,而 Cat6 电缆支持高达 1 Gbps。 Cat7 电缆还具有更好的屏蔽,以减少干扰和串扰。
问:什么是RJ45端口?
答:RJ45 端口是设备(例如计算机或网络设备)上的物理连接器,用于连接以太网电缆。 它是一个模块化端口,可接受 45 针 RJ8 连接器。 RJ45 端口常见于计算机、路由器、交换机和调制解调器。
问:哪里可以买到 RJ45 电缆?
答:您可以从各种专门销售网络设备的在线和实体商店购买 RJ45 电缆。 许多电子产品和电脑商店也出售 RJ45 电缆。 购买 RJ45 电缆时,请根据您的具体网络需求选择合适的长度和类别(例如 Cat5e、Cat6 或 Cat7)。
问:RJ45 电缆可以支持的最大距离是多少?
答:对于大多数以太网网络应用,RJ45 电缆可支持长达 100 米(328 英尺)的距离。 然而,值得注意的是,其他因素,例如电缆质量和环境条件,也会影响电缆的实际性能和最大距离。
推荐阅读
关于 RJ45 连接器您需要了解的一切
了解 Cat5e 和 Cat6 以太网电缆之间的区别
文章导航
上篇文章PCIe 卡终极指南:揭示 PCI Express x16 和 M.2 Gen 4 的强大功能下篇文章了解网络接口卡:探索 NIC 的接口和功能
最新文章
揭开谜团:SFP 与 SFP+ 及其惊人的差异
释放 SFP 电缆在电信领域的潜力:完整指南
了解 SFP 含义:综合指南
关于思科 SFP-10G-SR 收发器您需要了解的一切
本地数据中心与云:做出正确的基础设施选择
存档
2024 年 XNUMX 月 (4)
二月 二零二二年 (6)
2024 年 XNUMX 月 (33)
2023年十二月 (32)
2023年 十月 (4)
2023年九月 (30)
2023年XNUMX月 (21)
JULY 2023 (22)
JUNE 2023 (22)
MAY 2023 (8)
二月 二零二二年 (3)
分类目录
通讯技术
DAC/AOC
数据中心
光收发器
产品中心
专业技术
欢迎订阅我们的新闻
提交
产品中心
光模块
直连铜缆/直连光缆
波分复用设备
子配件
应用中心
数据中心
无线网络
存储网络
接入网
传输网络
新闻事件
行业新闻
公司新闻
博客
关于我们
关于我们
公司简介
企业文化
证书荣誉
联系我们
联系我们
留言板
人才招聘
联系方式
+86-755-26473461
传真: +86-755-26473462
邮箱: [email protected]
地址: 深圳市宝安71区留仙2路万源商务大厦2栋501室,邮编:518101
版权所有 © 2013-2023 AscentOptics 保留所有权利。 网站地图
隐私偏好
在您继续访问我们的网站之前,我们需要您的同意。 如果您未满 16 岁并希望同意可选服务,您必须征得您的法定监护人的许可。 我们在我们的网站上使用 cookie 和其他技术。 其中一些是必不可少的,而另一些则有助于我们改进本网站和您的体验。 可能会处理个人数据(例如 IP 地址),例如用于个性化广告和内容或广告和内容测量。 您可以在我们的 私隐政策.
隐私偏好
必要
基本cookie启用基本功能,对于网站的正常运行是必不可少的。
统计报表
第三方广告商或发布商使用营销 cookie 来显示个性化广告。他们通过跟踪网站上的访问者来做到这一点。
营销
统计cookie匿名收集信息。 这些信息有助于我们了解访问者如何使用我们的网站。
全部接受
全部拒绝
仅接受基本Cookie
仅接受选定的
隐私偏好
如果您未满 16 岁并希望同意可选服务,您必须征得您的法定监护人的许可。 我们在我们的网站上使用 cookie 和其他技术。 其中一些是必不可少的,而另一些则有助于我们改进本网站和您的体验。 可能会处理个人数据(例如 IP 地址),例如用于个性化广告和内容或广告和内容测量。 您可以在我们的 私隐政策. 在这里,您将找到所有使用的cookie的概述。 您可以同意整个类别,也可以显示更多信息并选择某些cookie。
全部接受
保存
仅接受基本Cookie
返回
隐私偏好
必不可少的(1)
基本cookie启用基本功能,对于网站的正常运行是必不可少的。
显示Cookie信息
隐藏Cookie信息
名字
基本 Cookie
Provider
该网站的所有者
宗旨
保存在基本 Cookie 的 Cookie 框中选择的访问者首选项。
Cookie Name
愿望饼干
Cookie到期
1年
统计(3)
统计报表
统计cookie匿名收集信息。 这些信息有助于我们了解访问者如何使用我们的网站。
显示Cookie信息
隐藏Cookie信息
接受
谷歌广告
名字
谷歌广告
Provider
谷歌Ireland Limited,Gordon House,Barrow Street,都柏林4,爱尔兰
宗旨
Google 的 Cookie 用于 Google Ads 的转化跟踪。
隐私政策
https://policies.google.com/privacy?hl=en
接受
Google Analytics
名字
Google Analytics
Provider
谷歌Ireland Limited,Gordon House,Barrow Street,都柏林4,爱尔兰
宗旨
Google的Cookie用于网站分析。 生成有关访问者如何使用网站的统计数据。
隐私政策
https://policies.google.com/privacy?hl=en
Cookie Name
_ga,_gat,_gid
Cookie到期
2个月
接受
谷歌标签管理
名字
谷歌标签管理
Provider
谷歌Ireland Limited,Gordon House,Barrow Street,都柏林4,爱尔兰
宗旨
Google 的 Cookie 用于控制高级脚本和事件处理。
隐私政策
https://policies.google.com/privacy?hl=en
Cookie Name
_ga,_gat,_gid
Cookie到期
2年
外部媒体(7)
外部媒体
默认情况下,视频平台和社交媒体平台的内容被阻止。 如果接受外部媒体cookie,则不再需要手动同意即可访问这些内容。
显示Cookie信息
隐藏Cookie信息
接受
名字
Provider
Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
宗旨
用于解锁Facebook内容。
隐私政策
https://www.facebook.com/privacy/explanation
主持人(S)
.facebook.com
接受
谷歌地图
名字
谷歌地图
Provider
谷歌Ireland Limited,Gordon House,Barrow Street,都柏林4,爱尔兰
宗旨
用于取消阻止Google Maps内容。
隐私政策
https://policies.google.com/privacy?hl=en&gl=en
主持人(S)
.google.com
Cookie Name
NID
Cookie到期
6月
接受
名字
Provider
Meta Platforms Ireland Limited, 4 Grand Canal Square, Dublin 2, Ireland
宗旨
用于取消阻止Instagram内容。
隐私政策
https://www.instagram.com/legal/privacy/
主持人(S)
.instagram.com
Cookie Name
pigeon_state
Cookie到期
时间
接受
OpenStreetMap的
名字
OpenStreetMap的
Provider
Openstreetmap 基金会,圣约翰创新中心,考利路,剑桥 CB4 0WS,英国
宗旨
用于取消阻止OpenStreetMap内容。
隐私政策
https://wiki.osmfoundation.org/wiki/Privacy_Policy
主持人(S)
.openstreetmap.org
Cookie Name
_osm_location,_ osm_session,_ osm_totp_token,_osm_welcome,_pk_id。,_ pk_ref。,_ pk_ses。,qos_token
Cookie到期
1-10 岁
接受
名字
Provider
Twitter 国际公司,一坎伯兰广场,芬尼安街,都柏林 2,D02 AX07,爱尔兰
宗旨
用于取消阻止Twitter内容。
隐私政策
https://twitter.com/privacy
主持人(S)
.twimg.com,.twitter.com
Cookie Name
__widgetsettings,local_storage_support_test
Cookie到期
无限次
接受
Vimeo的
名字
Vimeo的
Provider
Vimeo Inc.,555 West 18th Street, New York, New York 10011, 美国
宗旨
用于取消阻止Vimeo内容。
隐私政策
https://vimeo.com/privacy
主持人(S)
player.vimeo.com
Cookie Name
VUID
Cookie到期
2年
接受
YouTube
名字
YouTube
Provider
谷歌Ireland Limited,Gordon House,Barrow Street,都柏林4,爱尔兰
宗旨
用于取消阻止YouTube内容。
隐私政策
https://policies.google.com/privacy?hl=en&gl=en
主持人(S)
google.com
Cookie Name
NID
Cookie到期
6月
Access Denied
Access Denied
Access Denied
You don't have permission to access "http://www.intel.cn/content/www/cn/zh/support/articles/000007187/ethernet-products.html" on this server.
Reference #18.f4231c78.1710601817.3b27d480
什么是以太网? | 词汇表 | 慧与
什么是以太网? | 词汇表 | 慧与跳转到主目录 Hewlett Packard Enterprise Hewlett Packard Enterprise 主页 HPE GreenLake 解决方案 产品 服务 学习 支持 联系 更多 登录 主页 HPE GreenLake 服务 支持 联系 搜索 关闭 主页 HPE GreenLake 解决方案 产品 服务 学习 支持 联系 中国 (ZH) HPE MyAccount 您的 HPE MyAccount 可为您提供: HPE 生态系统单点登录途径 个性化推荐 试用与其他试用版 以及其他更多专属权益 登录帐户 创建帐户 HPE MyAccount HPE MyAccount 我的书签 管理帐户 管理帐户 登出 登出 我的购物车 您的购物车目前是空的 前往 HPE 商店浏览、配置和订购。 立即购买 发生错误 尝试在 HPE 商店查看您的购物车,或稍后再查看。 查看购物车 HPE 生态系统 HPE GreenLake 云控制台 云服务 数据服务 Compute Ops Management Aruba Central HPE GreenLake 管理 管理帐户 管理设备 HPE 资源 支持中心 Financial Services 开发人员 社区 返回主菜单 解决方案 开放且安全的边缘到云平台,助您推进数据优先现代化进程 开放且安全的边缘到云平台,助您推进数据优先现代化进程 了解更多有关 HPE GreenLake 边缘到云平台的信息 边缘 连接边缘 掌控边缘到云的数据。 数据 将数据转化为智能洞见 单一数据事实来源,助您做出明智决策,为客户提供实用的建议。 AI 要让 AI 为您所用 挖掘数据的全部潜力,为您创造 AI 优势。 云 打造混合云 以您需要的方式提供混合云。 安全性 保护数据 安全保护到位。 所有产品和解决方案 产品类型 按主题分类的解决方案 行业 查看全部 返回主菜单 产品 边缘到云端平台 HPE GreenLake 通过 HPE GreenLake 边缘到云平台加速您的数据优先现代化步伐,无论应用和数据位于何处,均可享受云体验。 HPE GreenLake 通过 HPE GreenLake 边缘到云平台加速您的数据优先现代化步伐,无论应用和数据位于何处,均可享受云体验。 了解 HPE GreenLake 产品类型 Supercomputing Compute Storage Networking Software Services 产品品牌 HPE Cray Supercomputing HPE ProLiant Compute HPE Alletra Storage HPE Aruba Networking HPE Ezmeral Software HPE Services 特别推荐产品 HPE GreenLake for Networking HPE GreenLake for Block Storage HPE GreenLake for Private Cloud Enterprise HPE GreenLake for Compute Ops Management HPE GreenLake for Disaster Recovery HPE GreenLake for Backup and Recovery 所有产品和解决方案 产品类型 按主题分类的解决方案 行业 查看全部 返回主菜单 学习 关于 HPE 了解 HPE 企业社会责任 人才招聘 活动 认证与培训 HPE Education Services 免费的开发人员点播研讨会 免费的按需学习技术课程 资源和文档 客户成功案例 参考架构 规格概述 网络研讨会 查看全部 HPE GreenLake 入门 什么是边缘到云? HPE GreenLake 常见问题解答 亲自试用 HPE GreenLake Central 用户指南 以太网 主页 企业词汇表 - 关键定义 什么是以太网? Overview 概述 跳到 联系我们 Overview 概述 电子邮件销售 电子邮件销售 销售聊天 销售聊天 销售聊天 销售聊天 联系我们! 我们的销售专家竭诚为您服务 电子邮件销售 电子邮件销售 销售聊天 销售聊天 销售聊天 销售聊天 什么是以太网? 以太网是连接设备以建立局域网 (LAN) 的热门网络协议。该协议支持设备通过网络与另一台设备交换数据包以进行通信。以太网发明于 20 世纪 70 年代,自那以后,无论是处理距离还是速度都已大大提高。 以太网基于 CSMA/CD(具有冲突检测的载波侦听多路访问)协议而构建,当多个设备尝试同时发送数据时该协议有助于避免数据冲突。该协议用于控制网络流量并保证数据传输可靠。数据也是通过使用物理层技术的铜线或光纤连接来发送。 HPE Aruba CX 交换机 | HPE Aruba EdgeConnect SD-WAN | HPE HPE GreenLake 网络服务 (NaaS) Aruba Central Aruba 接入点 HPE Aruba ClearPass Policy Manager 以太网有哪些用途? 以太网是专门用于将设备连接到一起以构成局域网 (LAN) 的网络技术,对许多环境(从小型企业到数据中心)中的有线网络连接而言,都是可靠高效的标准。 以太网用于各种用途,包括: 连接设备:用于将计算机、打印机、路由器和交换机之类的设备彼此连接,并连接到互联网,以便以在设备之间高效可靠地传输数据。 文件共享:以太网用于在网络上的设备之间传输文件。这样用户便可轻松共享项目数据并开展协作。 视频会议:以太网用于支持视频会议,以便允许用户与不同位置的其他用户实时沟通。这对于远程团队或拥有多处办公场所的企业来说非常实用。 网络游戏:以太网通常用于网络游戏,可靠快速的数据传输对享受良好的游戏体验至关重要。 数据存储:以太网用于将设备连接到网络连接存储 (NAS) 设备,从而可以集中存储数据并轻松访问多台设备中的数据。 以太网还用于网络管理和监控。 以太网还支持 SNMP(简单网络管理协议)之类的协议,从而允许网络管理员监控网络性能并诊断问题。 以太网的工作原理 以太网是一种使用软硬件混合连接设备以建立局域网 (LAN) 的网络技术。以下简要介绍了以太网的工作原理: 硬件:以太网通过利用网络接口卡 (NIC)、以太网电缆、交换机和集线器之类的实际硬件连接设备。每个网络设备都有专属 MAC 地址,用于在网络上标识设备。 协议:为规范网络流量及确保数据传输可靠性,以太网利用 CSMA/CD(具有冲突检测的载波侦听多路访问)协议。当多个设备尝试同时发送数据时,CSMA/CD 通过让设备发送自己的数据前监控网络流量来帮助减少数据冲突。当两个设备尝试同时传输数据时,它们都将注意到会发生冲突并将随后的尝试推迟一段不确定的时间。 数据传输:网络上的设备想与另一个设备交流数据,就会构建一个包含内容和来源及目标 MAC 地址的数据包。随后通过以太网线路将该包发送至目标设备。如果目标设备未连接到同一网络,该包将通过路由器传送直至到达其目的地。 数据接收:设备收到数据包时,将会检查目标 MAC 地址,查看其是否对应自己的 MAC 地址。如果 MAC 地址匹配,则接受该数据包并从中检索数据。如果 MAC 地址不符,则拒绝该数据包。 网络拓扑:以太网支持多种网络拓扑,包括星型、网格型和点对点网络。在点对点网络中,两个设备直接链接彼此。在星型网络中,设备链接到中央集线器或交换机。在网格网络中,设备在复杂的链接网络中彼此互连。 总之,以太网可以控制网络流量并确保数据在设备之间可靠传输。 什么是网络中的以太网? 以太网建立在多种规范基础之上,这些规范概括了网络的物理和数据连接层。诸如网络接口卡 (NIC)、以太网电缆、交换机和集线器等网络设备均由物理层定义。数据连接层指定网络设备如何与另一设备通信,以及数据如何通过网络传输。 在网络中,以太网用于执行多种任务,如设备连接、文件共享、视频会议、网络游戏和数据存储。对于多种应用和设置来说,以太网提供了一种可靠有效的数据传输方法。 总之,以太网是一种重要的网络技术,为各种网络设置和应用提供了坚实的基础。得益于可扩展性和适应性优势,以太网可满足从小型企业到大型数据中心的各类网络要求。 HPE 和以太网 HPE 以太网解决方案指多种网络产品和技术,旨在计算系统内部和系统之间实现高速数据通信和连接。这些解决方案设计用于满足现代数据中心、云计算环境和其他高性能计算应用的需求, 还用于提供快速可靠的数据传输,提升网络性能以及简化网络基础设施管理。 一些利用以太网的 HPE 解决方案示例包括: HPE GreenLake 网络服务 - 通过将所有硬件、软件和服务合并为单个月度订阅,将采购模式从资本支出式转换为运营支出式。快速部署有线、无线和 SD-WAN 网络以解决关键用例。 HPE Aruba CX 交换机 - 利用 AI 驱动的自动化和从边缘扩展到数据中心再云的交换机提供的内置安全性,简化部署并管理现代网络的复杂难题。 Aruba EdgeConnect SD-WAN - 通过直观的管理界面,从单一管理平台体验完整的广域网可观察性和控制力,使您能够集中定义、分配和执行策略,为广域网上的所有用户提供最高品质的体验。 Aruba Central - 体验基于云的网络解决方案,通过 AI 驱动的洞察、工作流程自动化以及边缘到云的安全性,对园区、分支机构、数据中心和远程办公位置的无线、有线和广域网基础设施进行统一管理。 Aruba 接入点 - 通过智能、快速且安全的业务连接,提高网络容量并增强 IT、用户和 IoT 体验。 Aruba ClearPass Policy Manager - 以零信任安全策略保护您的网络,以便采用混合工作场所计划、物联网设备和边缘计算。 我们可以为您提供哪些帮助? 搜索 hpe.com 搜索 hpe.com 搜索 hpe.com Buy 购买方式 Product 产品支持 Email 电子邮件销售 Chat 与销售人员交谈 致电慧与 联系 HPE 关注慧与 Linkedin X Facebook Youtube RSS 公司 公司 关于慧与 可及性 人才招聘 联系我们 企业责任 全球多元化及包容度 慧与现代奴隶透明化声明 (PDF) Hewlett Packard Labs 投资者关系 企业管理层 公开政策 相关信息: 相关信息: 人工智能 云计算 容器 机器学习 企业词汇表 新闻和活动 新闻和活动 新闻中心 HPE Discover 活动 网络研讨会 本地活动 合作伙伴 合作伙伴 Partner Ready Program Partner Ready Vantage 计划 寻找合作伙伴 认证 HPE GreenLake Marketplace 支持 支持 产品支持 软件和驱动程序 保修检查 增强型支持服务 教育与培训 产品回收与再利用 确认设备零件 社区 社区 HPE 社区 Aruba Airheads HPE Tech Pro Community 慧与开发人员 所有博客和论坛 客户资源 客户资源 客户实例 购买方式 金融服务 HPE 客户中心 电子邮件注册 HPE MyAccount 资源库 视频库 申请加入 Voice of the Customer 计划 关注慧与 Linkedin X Facebook Youtube RSS 中国 (zh) © 版权所有 2024 慧与发展有限责任合伙企业 隐私 使用条款 广告支持与 Cookie 网站地图