苹果手机怎么下载tokenpocket钱派|ethernet核心技术
苹果手机怎么下载tokenpocket钱派|ethernet核心技术
以太网 - 维基百科,自由的百科全书
以太网 - 维基百科,自由的百科全书
跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页分类索引特色内容新闻动态最近更改随机条目资助维基百科
帮助
帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科
搜索
搜索
创建账号
登录
个人工具
创建账号 登录
未登录编辑者的页面 了解详情
贡献讨论
目录
移至侧栏
隐藏
序言
1历史
2概述
3CSMA/CD共享介质以太网
4以太网中继器和集线器
5桥接和交换
6类型
开关类型子章节
6.1早期的以太网
6.210Mbps乙太網
6.3100Mbps以太网(快速以太网)
6.41Gbps以太网
6.510Gbps以太网
6.6100Gbps以太网
7参考文献
8参見
9外部链接
开关目录
以太网
76种语言
AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБългарскиবাংলাBrezhonegBosanskiCatalàکوردیČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiVõroFrançaisGaeilgeGalegoગુજરાતીGaelgעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語Қазақшаಕನ್ನಡ한국어KurdîLatinaLëtzebuergeschLombardLietuviųLatviešuМакедонскиമലയാളംमराठीBahasa MelayuNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்తెలుగుไทยTagalogTürkçeУкраїнськаاردوTiếng Việt吴语ייִדיש粵語
编辑链接
条目讨论
不转换
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
阅读编辑查看历史
工具
工具
移至侧栏
隐藏
操作
阅读编辑查看历史
常规
链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目
打印/导出
下载为PDF打印页面
在其他项目中
维基共享资源
维基百科,自由的百科全书
電腦網路的類型
依覆盖范围排序列表
纳米网络
近場通訊(NFC)
藍牙
體域網
個人區域網絡(PAN)
无线个人网
局域网(LAN)
有线局域网
以太网
令牌环
光纤分布式数据接口
无线局域网(WLAN)
Wi-Fi
ZigBee
Thread
MMDS
SMDS
虚拟局域网(VLAN)
家庭网络(英语:Home network)(HAN)
存储区域网络(SAN)
园区网络(CAN)
骨幹網
城域网(MAN)
广域网(WAN)
异步传输模式
帧中继
同步数字体系(SDH)
企业专用网络
虛擬私人網路(VPN)
雲端(英语:Internet area network)
互联网
星际互联网(IPN)
查论编
「Ethernet」的各地常用名稱笔记本电脑上已插上网路线的以太网接口中国大陸以太网 臺灣乙太網路
以太网(英語:Ethernet)是一种计算机局域网技术。IEEE組織的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。
以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,將能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一來,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即載波多重存取/碰撞偵測)的总线技术。
历史[编辑]
以太网技术起源於施樂帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:區域计算机网络的分布式封包交换技术》的文章。
網際網路协议套組
應用層
BGP
DHCP
DNS
FTP
HTTP
HTTPS
IMAP
LDAP
MGCP(英语:Media Gateway Control Protocol)
MQTT
NNTP
NTP
POP
ONC/RPC
RTP
RTSP
SIP
SMTP
SNMP
Telnet
TLS/SSL
SSH
XMPP
更多...
傳輸層
TCP
UDP
DCCP
SCTP
RSVP
更多...
網路層
IP
IPv4
IPv6
ICMP
ICMPv6
ECN
IGMP
OSPF
IPsec
RIP
更多...
連結層
ARP
NDP
Tunnels
L2TP
PPP
MAC
Ethernet
DSL
ISDN
FDDI
更多...
查论编
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇[哪個/哪些?]与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。[來源請求]
概述[编辑]
1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。
以太网實作了网络上无线电系统多个节点发送信息的想法,每个节点必须取得电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有節點能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。
以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。
CSMA/CD共享介质以太网[编辑]
带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行動與狀態之間進行轉換:
开始 - 如果线路空闲,则启动传输,否则跳转到第4步。
发送 - 如果检测到冲突,继续发送数据直到达到最小回報时间(min echo receive interval)以確保所有其他转发器和终端检测到冲突,而後跳轉到第4步。
成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。
線路繁忙 - 持續等待直到线路空闲。
线路空闲 - 在尚未達到最大尝试次數之前,每隔一段随机时间转到第1步重新嘗試。
超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都透過一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延遲指数增长时间後再次嘗試。延遲的时间通过截斷二進位指數後移(英语:Exponential_backoff)(truncated binary exponential backoff)演算法来实现。
最初的以太网是采用同轴电缆来連接各个设备的。电脑透過一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一條简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是想发给其中的一个终端(destination),卻會使用廣播的形式,發送給線路上的所有電腦。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
以太网中继器和集线器[编辑]
在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。
因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以透過以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。
类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。
随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。
第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。
像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。
非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最後取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准線路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。
采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少封包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总傳輸量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、傳輸間隔、檔頭、檔尾和封裝上都是最小花費的情况。当网络负载过重时,冲突也常常会降低傳輸量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因衝突過多導致网络的负载在仅50%左右程度就滿載。为了在冲突严重降低傳輸量之前尽量提高网络的负载,通常会先做一些设定以避免類似情況發生。
桥接和交换[编辑]
尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。透過橋接器时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。透過记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。
早期的网桥要检测每一个数据包,因此當同时处理多个端口的时候,数据转发比Hub(中继器)來得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。
大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,雖然设备在半双工模式下運作時仍是共享介质的多節点网,但10BASE-T和以后的标准皆為全双工以太网,不再是共享介质系统。
交换机啟動后,一開始也和Hub一樣,转发所有数据到所有端口。接下来,当它記錄了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。
因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。
当只有简单设备(除Hub之外的设备)連接交换机端口時,整个网络可能處於全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。這時总带宽是鏈路的2倍,雖然雙方的頻寬相同,但没有发生冲突就意味着几乎能利用到100%的带宽。
交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备透過信号来协调要使用的速率和双工设置。然而,如果自动协商功能被關閉或者设备不支持,则双工设置必须透過自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多較低層級的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。
即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。
当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem透過详细的方法检测鏈路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致鏈路失效。解决方案為强制通讯端降低到电缆支持的速率。
类型[编辑]
除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。
以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。
很多以太网卡和交换设备都支持多速率,设备之间透過自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。
部分以太网类型[1]
速度
常用名称
非正式的IEEE标准名称
正式的IEEE标准名称
线缆类型
最大传输距离
10Mbps
以太网
10BASE-T
802.3
双绞线
100m
100Mbps
快速以太网
100BASE-T
802.3u
双绞线
100m
1Gbps
吉比特以太网
1000BASE-LX
802.3z
光纤
5000m
1Gbps
吉比特以太网
1000BASE-T
802.3ab
双绞线
100m
10Gbps
10吉比特以太网
10GBASE-T
802.3an
双绞线
100m
早期的以太网[编辑]
参见:兆比特以太网
施乐以太网(Xerox Ethernet,又稱「全錄乙太網」)──是乙太網的雛型。最初的2.94Mbit/s以太网僅在全錄公司裡內部使用。而在1982年,Xerox與DEC及Intel組成DIX聯盟,並共同發表了Ethernet Version 2(EV2)的規格,並將它投入商場市場,且被普遍使用。而EV2的網絡就是目前受IEEE承認的10BASE5。[2]
10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。
1BASE5 ──也稱為星型局域网,速率是1Mbit/s。在商业上很失败,但同時也是双绞线的第一次使用。
10Mbps乙太網[编辑]
10BASE-T電纜
参见:十兆以太网
10BASE5(又稱粗纜(Thick Ethernet)或黃色電纜)──最早實現10 Mbit/s以太網。早期IEEE標準,使用單根RG-11同軸電纜,最大距離為500米,並最多可以連接100台電腦的收發器,而纜線兩端必須接上50歐姆的終端電阻。接收端透過所謂的「插入式分接頭」插入電纜的內芯和屏蔽層。在電纜終結處使用N型連接器。儘管由於早期的大量布設,到現在還有一些系統在使用,這一標準實際上被10BASE2取代。
10BASE2(又稱細纜(Thin Ethernet)或模擬網路)── 10BASE5後的產品,使用RG-58同軸電纜,最長轉輸距離約200米(實際為185米),僅能連接30台計算機,計算機使用T型適配器連接到帶有BNC連接器的網卡,而線路兩頭需要50歐姆的終結器。雖然在能力、規格上不及10BASE5,但是因為其線材較細、佈線方便、成本也便宜,所以得到更廣泛的使用,淘汰了10BASE5。由於雙絞線的普及,它也被各式的雙絞線網絡取代。
StarLAN ──第一個雙絞線上實現的以太網路標準10 Mbit/s。後發展成10BASE-T。
10BASE-T ──使用3類雙絞線、4類雙絞線、5類雙絞線的4根線(兩對雙絞線)100米。以太網集線器或以太網交換機位於中間連接所有節點。
FOIRL ──光纖中繼器鏈路。光纖以太網路原始版本。
10BASE-F ── 10Mbps以太網光纖標準通稱,2公里。只有10BASE-FL應用比較廣泛。
10BASE-FL ── FOIRL標準一種升級。
10BASE-FB ──用於連接多個Hub或者交換機的骨幹網技術,已廢棄。
10BASE-FP ──無中繼被動星型網,沒有實際應用的案例。
100Mbps以太网(快速以太网)[编辑]
参见:百兆以太网
快速以太网(Fast Ethernet)為IEEE在1995年發表的網路標準,能提供達100Mbps的傳輸速度。[2]
100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。
100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。
100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。
100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。
100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。
100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。
苹果的千兆以太网络接口
1Gbps以太网[编辑]
参见:吉比特以太网
1000BASE-SX的光信號與電氣信號轉換器
1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。
1000BASE-SX -- 1 Gbit/s多模光纤(取決於頻率以及光纖半徑,使用多模光纖時最長距離在220M至550M之間)。[3]
1000BASE-LX -- 1 Gbit/s多模光纤(小於550M)、單模光纖(小於5000M)。[4]
1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案
1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案
1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案
1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。
10Gbps以太网[编辑]
参见:10吉比特乙太網路
新的万兆以太网标准包含7种不同类型,分別适用于局域网、城域网和广域网。目前使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。
10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。
10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。
10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。
10GBASE-LR和10GBASE-ER -- 透過单模光纤分别支持10公里和40公里
10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)
10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。
100Gbps以太网[编辑]
参见:100吉比特以太网
新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。目前使用附加标准IEEE 802.3ba。
40GBASE-KR4 -- 背板方案,最少距离1米。
40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。
40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。
40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。
100GBASE-ER4 -- 使用单模光纤,距离超过40公里。
参考文献[编辑]
^ Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.
^ 2.0 2.1 Internet協定觀念與實作ISBN 9577177069
^ IEEE 802.3-2008 Section 3 Table 38-2 p.109
^ IEEE 802.3-2008 Section 3 Table 38-6 p.111
参見[编辑]
5类双绞线
RJ45
Power over Ethernet
MII and PHY
网络唤醒
1G以太网
10G以太网
100G以太网
1000G以太网
虚拟局域网
生成树协议
通讯
Internet
以太网帧格式
外部链接[编辑]
IEEE 802.3 2002年标准(页面存档备份,存于互联网档案馆)
万兆以太网(页面存档备份,存于互联网档案馆)
以太网帧格式(页面存档备份,存于互联网档案馆)
万兆IP以太网白皮书
千兆以太网(1000BaseT)(页面存档备份,存于互联网档案馆)
查论编局域网技术之以太网家族速度
10Mbit/s
双绞线以太网
100Mbit/s
1Gbit/s
2.5和5Gbit/s
10Gbit/s
25和50Gbit/s(英语:25 Gigabit Ethernet)
40和100Gbit/s
200Gbit/s和400Gbit/s
常规
IEEE 802.3
乙太網路實體層(英语:Ethernet physical layer)
自动协商(英语:Autonegotiation)
以太网供电
以太类型
以太网联盟(英语:Ethernet Alliance)
流控制
帧
巨型帧
历史
CSMA/CD
StarLAN(英语:StarLAN)
10BROAD36(英语:10BROAD36)
10BASE-FB(英语:10BASE-FB)
10BASE-FL(英语:10BASE-FL)
10BASE5(英语:10BASE5)
10BASE2(英语:10BASE2)
100BaseVG(英语:100BaseVG)
LattisNet(英语:LattisNet)
长距离(英语:Long Reach Ethernet)
应用程序
音频(英语:Audio over Ethernet)
运营商(英语:Carrier Ethernet)
数据中心(英语:Data center bridging)
高能效以太网
第一英里(英语:Ethernet in the first mile)
10G-EPON(英语:10G-EPON)
工業以太網
以太网供电
同步(英语:Synchronous Ethernet)
收发器
MAU(英语:Medium Attachment Unit)
GBIC
SFP
XENPAK
X2
XFP
SFP+
QSFP(英语:QSFP)
CFP(英语:C Form-factor Pluggable)
接口
AUI(英语:Attachment Unit Interface)
MDI
MII
GMII
XGMII
XAUI
分类
维基共享
查论编網際網路存取有线网络
线缆(英语:Cable Internet access)
拨号
DOCSIS
DSL
以太网
FTTx
G.hn(英语:G.hn)
HD-PLC
HomePlug
HomePNA(英语:HomePNA)
IEEE 1901(英语:IEEE 1901)
ISDN
MoCA(英语:Multimedia over Coax Alliance)
PON
电力线
宽带
无线个人局域网
藍牙
Li-Fi
无线USB
无线局域网
Wi-Fi
无线广域网
DECT
EV-DO
GPRS
HSPA
HSPA+
iBurst(英语:iBurst)
LTE
MMDS
Muni Wi-Fi
WiMAX
WiBro
卫星上网
查论编IEEE標準当前标准
488
754
Revision(英语:IEEE 754 revision)
829
830
1003
1014-1987(英语:VMEbus)
1016
1076
1149.1
1164(英语:IEEE 1164)
1219
1233
1275(英语:Open Firmware)
1278(英语:Distributed Interactive Simulation)
1284(英语:IEEE 1284)
1355(英语:IEEE 1355)
1364
1394
1451(英语:IEEE 1451)
1471(英语:IEEE 1471)
1491
1516(英语:High-level architecture (simulation))
1541-2002
1547(英语:IEEE 1547)
1584(英语:IEEE 1584)
1588(英语:Precision Time Protocol)
1596(英语:Scalable Coherent Interface)
1603(英语:IEEE 1603)
1613(英语:IEEE 1613)
1667(英语:IEEE 1667)
1675(英语:IEEE 1675-2008)
1685(英语:IP-XACT)
1800
1801(英语:Unified Power Format)
1900(英语:DySPAN)
1901(英语:IEEE 1901)
1902(英语:RuBee)
11073(英语:ISO/IEEE 11073)
12207(英语:IEEE 12207)
2030(英语:IEEE 2030)
14764
16085
16326
42010(英语:ISO/IEC 42010)
802系列802.1
p
Q
Qat(英语:Stream Reservation Protocol)
Qay(英语:Provider Backbone Bridge Traffic Engineering)
X
ad
AE(英语:IEEE 802.1AE)
ag(英语:IEEE 802.1ag)
ah(英语:IEEE 802.1ah-2008)
ak(英语:Multiple Registration Protocol)
aq
ax
802.11
Legacy
a
b
d(英语:IEEE 802.11d-2001)
e(英语:IEEE 802.11e-2005)
f(英语:Inter-Access Point Protocol)
g
h(英语:IEEE 802.11h-2003)
i(英语:IEEE 802.11i-2004)
j(英语:IEEE 802.11j-2004)
k(英语:IEEE 802.11k-2008)
n (Wi-Fi 4)
p
r
s
u(英语:IEEE 802.11u)
v(英语:IEEE 802.11v)
w(英语:IEEE 802.11w-2009)
y(英语:IEEE 802.11y-2008)
ac (Wi-Fi 5)
ad (WiGig)
af
ah
ai
aj
aq
ax (Wi-Fi 6)
ay (WiGig 2)
be (Wi-Fi 7)
.2
.3
.4
.5
.6(英语:IEEE 802.6)
.7(英语:IEEE 802.7)
.8
.9(英语:IEEE 802.9)
.10(英语:IEEE 802.10)
.12(英语:IEEE 802.12)
.15
.15.4(英语:IEEE 802.15.4)
.15.4a(英语:IEEE 802.15.4a)
.16
.18(英语:IEEE 802.18)
.20(英语:IEEE 802.20)
.21(英语:IEEE 802.21)
.22建议标准
P1363(英语:IEEE P1363)
P1619
P1823(英语:Universal Power Adapter for Mobile Devices)
过时标准
754-1985(英语:IEEE 754-1985)
854-1987(英语:IEEE 854-1987)
另见
IEEE標準協會
Category:IEEE标准
查论编电子计算机基本部件输入设备
鍵盤
數字鍵盤
影像掃描器
显示卡
圖形處理器
麦克风
定点设备
数码绘图板
游戏控制器
光筆(英语:Light pen)
鼠标
光學
指点杆
触摸板
觸控式螢幕
轨迹球
盲文显示机
声卡
聲音處理器(英语:Sound chip)
摄像头
虛擬(英语:Softcam)
输出设备
顯示器
螢幕
盲文显示机
打印机
繪圖儀(英语:Plotter)
揚聲器(英语:Computer speakers)
声卡
显示卡
移动存储
磁碟組(英语:Disk pack)
软盘
光碟
CD
DVD
BD
闪存
記憶卡
闪存盘
机箱
中央处理器
微处理器
主板
記憶體
隨機存取
BIOS
數據存貯器
硬盘
固态硬盘
混合固态硬盘
電源供應器
開關模式電源
金屬氧化物半導體場效電晶體
功率
電壓調節模組
网卡
傳真數據機(英语:Fax modem)
擴充卡
接口(英语:Computer port (hardware))
以太网
FireWire
並列
序列
PS/2
USB
Thunderbolt
DisplayPort/HDMI/DVI/VGA
SATA
TRS
规范控制
AAT: 300266018
GND: 4127501-9
J9U: 987007555681905171
LCCN: sh85045087
取自“https://zh.wikipedia.org/w/index.php?title=以太网&oldid=81300354”
分类:乙太網路计算机总线隐藏分类:含有英語的條目自2014年12月有非常模棱两可或者十分空泛语句的条目自2024年2月有未列明来源语句的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目
本页面最后修订于2024年2月19日 (星期一) 10:07。
本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。
维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。
隐私政策
关于维基百科
免责声明
行为准则
开发者
统计
Cookie声明
手机版视图
开关有限宽度模式
以太网(Ethernet) - 知乎
以太网(Ethernet) - 知乎首页知乎知学堂发现等你来答切换模式登录/注册以太网(Ethernet)以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连…查看全部内容关注话题管理分享百科讨论精华视频等待回答详细内容以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,将能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一来,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即载波多重访问/碰撞侦测)的总线技术。概述:1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。以太网实现了网络上无线电系统多个节点发送信息的想法,每个节点必须获取电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有节点能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。CSMA/CD共享介质以太网:带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行动与状态之间进行转换:开始 - 如果线路空闲,则启动传输,否则跳转到第4步。发送 - 如果检测到冲突,继续发送数据直到达到最小回报时间(min echo receive interval)以确保所有其他转发器和终端检测到冲突,而后跳转到第4步。成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。线路繁忙 - 持续等待直到线路空闲。线路空闲 - 在尚未达到最大尝试次数之前,每隔一段随机时间转到第1步重新尝试。超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。就像在没有主持人的座谈会中,所有的参加者都通过一个共同的介质(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延迟指数增长时间后再次尝试。延迟的时间通过截断二进制指数后移(英语:Exponential_backoff)(truncated binary exponential backoff)算法来实现。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一条简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。因为所有的通信信号都在共享线路上传输,即使信息只是想发给其中的一个终端(destination),却会使用广播的形式,发送给线路上的所有电脑。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。以太网中继器和集线器:在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共享一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最后取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准线路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少数据包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总传输量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、传输间隔、标头、档尾和封装上都是最小花费的情况。当网络负载过重时,冲突也常常会降低传输量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因冲突过多导致网络的负载在仅50%左右程度就满载。为了在冲突严重降低传输量之前尽量提高网络的负载,通常会先做一些设定以避免类似情况发生。桥接和交换:尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,因此当同时处理多个端口的时候,数据转发比Hub(中继器)来得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,虽然设备在半双工模式下运作时仍是共享介质的多节点网,但10BASE-T和以后的标准皆为全双工以太网,不再是共享介质系统。交换机启动后,一开始也和Hub一样,转发所有数据到所有端口。接下来,当它记录了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)连接交换机端口时,整个网络可能处于全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。这时总带宽是链路的2倍,虽然双方的带宽相同,但没有发生冲突就意味着几乎能利用到100%的带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商功能被关闭或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多较低层级的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地创建一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致链路失效。解决方案为强制通讯端降低到电缆支持的速率。以太网类型:除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。很多以太网卡和交换设备都支持多速率,设备之间通过自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。部分以太网类型局域网(英语:Local Area Network,简称LAN)是连接住宅、学校、实验室、大学校园或办公大楼等有限区域内计算机的计算机网络 。相比之下,广域网(WAN)不仅覆盖较大的地理距离,而且还通常涉及固接专线和对于互联网的链接。 相比来说互联网则更为广阔,是连接全球商业和个人电脑的系统。在历经使用了链式局域网(英语:ARCNET)、令牌环与AppleTalk技术后,以太网和Wi-Fi(无线网络连接)是现今局域网最常用的两项技术。机理:局域网(Local Area Network, LAN),又称内网。指覆盖局部区域(如办公室或楼层)的计算机网络。按照网络覆盖的区域(距离)不同,其他的网络类型还包括个人网、城域网、广域网等。早期的局域网网络技术都是各不同厂家所专有,互不兼容。后来,电机电子工程师学会推动了局域网技术的标准化,由此产生了IEEE 802系列标准。这使得在建设局域网时可以选用不同厂家的设备,并能保证其兼容性。这一系列标准覆盖了双绞线、同轴电缆、光纤和无线等多种传输介质和组网方式,并包括网络测试和管理的内容。随着新技术的不断出现,这一系列标准仍在不断的更新变化之中。以太网(IEEE 802.3标准)是最常用的局域网组网方式。以太网使用双绞线作为传输介质。在没有中继的情况下,最远可以覆盖200米的范围。最普及的以太网类型数据传输速率为100Mb/s,更新的标准则支持1000Mb/s和10Gb/s的速率。其他主要的局域网类型有令牌环和FDDI(光纤分布数字接口,IEEE 802.8)。令牌环网络采用同轴电缆作为传输介质,具有更好的抗干扰性;但是网络结构不能很容易的改变。FDDI采用光纤传输,网络带宽大,适于用作连接多个局域网的骨干网。近两年来,随着802.11标准的制定,无线局域网的应用大为普及。这一标准采用2.4GHz 和5.8GHz 的频段,数据传输速度最高可以达到300Mbps和866Mbps。局域网标准定义了传输介质、编码和介质访问等底层(一二层)功能。要使数据通过复杂的网络结构传输到达目的地,还需要具有寻址、路由和流量控制等功能的网络协议的支持。TCP/IP(传输控制协议/互联网络协议)是最普遍使用的局域网网络协议。它也是互联网所使用的网络协议。其他常用的局域网协议包括,IPX、AppleTalk等。在无线 LAN 中,用户可以在覆盖区域内不受限制地移动。无线网络因其易于安装而在住宅和小型企业中流行起来。大多数无线局域网都使用 Wi-Fi,因为它内置于智能手机、平板电脑和笔记本电脑中。客人通常可以通过热点服务上网。网络拨接互联网(英语:Internet)是指20世纪末期兴起电脑网络与电脑网络之间所串连成的庞大网络系统。这些网络以一些标准的网络协议相连。它是由从地方到全球范围内几百万个私人、学术界、企业和政府的网络所构成,通过电子、无线和光纤网络技术等等一系列广泛的技术联系在一起。互联网承载范围广泛的信息资源和服务,比方说相互关系的超文本文件,还有万维网(WWW)的应用、电子邮件、通话,以及文件共享服务。互联网的起源可以追溯到1960年代美国联邦政府委托进行的一项研究,目的是创建容错与电脑网络的通信。互联网的前身ARPANET最初在1980年代作为区域学术和军事网络连接的骨干。1980年代,NSFNET(英语:NSFNET)成为新的骨干而得到资助,以及其他商业化扩展得到了私人资助,这导致了全世界网络技术的快速发展,以及许多不同网络的合并结成更大的网络。到1990年代初,商业网络和企业之间的连接标志着向现代互联网的过渡。尽管互联网在1980年代只被学术界广泛使用,但商业化的服务和技术,令其极快的融入了现代每个人的生活。互联网并不等同万维网,互联网是指凡是能彼此通信的设备组成的网络就叫互联网,指利用TCP/IP通讯协定所创建的各种网络,是国际上最大的互联网,也称“国际互联网”。万维网是一个由许多互相链接的超文本组成的系统,通过互联网访问。在此定义下,万维网是互联网的一项服务。不过多数民众并不区分两者,常常混用。连接技术:任何需要使用互联网的计算机必须通过某种方式与互联网进行连接。互联网接入技术的发展非常迅速,带宽由最初的14.4Kbps发展到目前的100Mbps甚至1Gbps带宽,接入方式也由过去单一的电话拨号方式,发展成现在多样的有线和无线接入方式,接入终端也开始朝向移动设备发展。并且更新更快的接入方式仍在继续地被研究和开发。架构:最顶层的是一些应用层协议,这些协议定义了一些用于通用应用的数据报结构,包括FTP及HTTP等。中间层是UDP协议和TCP协议,它们用于控制数据流的传输。UDP是一种不可靠的数据流传输协议,仅为网络层和应用层之间提供简单的接口。而TCP协议则具有高的可靠性,通过为数据报加入额外信息,并提供重发机制,它能够保证数据不丢包、没有冗余包以及保证数据包的顺序。对于一些需要高可靠性的应用,可以选择TCP协议;而相反,对于性能优先考虑的应用如流媒体等,则可以选择UDP协议。最底层的是互联网协议,是用于报文交换网络的一种面向数据的协议,这一协议定义了数据包在网际传送时的格式。目前使用最多的是IPv4版本,这一版本中用32位定义IP地址,尽管地址总数达到43亿,但是仍然不能满足现今全球网络飞速发展的需求,因此IPv6版本应运而生。在IPv6版本中,IP地址共有128位,“几乎可以为地球上每一粒沙子分配一个IPv6地址”。IPv6目前并没有普及,许多互联网服务提供商并不支持IPv6协议的连接。但是,可以预见,将来在IPv6的帮助下,任何家用电器都有可能连入互联网。互联网承载着众多应用程序和服务,包括万维网、社交媒体、电子邮件、移动应用程序、多人电子游戏、互联网通话、文件分享和流媒体服务等。提供这些服务的大多数服务器托管于数据中心,并且通过高性能的内容分发网络访问。万维网(英语:World Wide Web)亦作WWW、Web、全球广域网,是一个透过互联网访问的,由许多互相链接的超文本组成的信息系统。英国科学家蒂姆·伯纳斯-李于1989年发明了万维网。1990年他在瑞士CERN的工作期间编写了第一个网页浏览器。网页浏览器于1991年1月向其他研究机构发行,并于同年8月向公众开放。罗伯特·卡里奥设计的Web图标万维网是信息时代发展的核心,也是数十亿人在互联网上进行交互的主要工具。网页主要是文本文件格式化和超文本置标语言(HTML)。除了格式化文字之外,网页还可能包含图片、视频、声音和软件组件,这些组件会在用户的网页浏览器中呈现为多媒体内容的连贯页面。万维网并不等同互联网,万维网只是互联网所能提供的服务其中之一,是靠着互联网运行的一项服务。参考文献: Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.Internet协议观念与实现ISBN 9577177069Internet协议观念与实现ISBN 9577177069IEEE 802.3-2008 Section 3 Table 38-2 p.109IEEE 802.3-2008 Section 3 Table 38-6 p.111网络化生存,乔岗,中国城市出版社,1997年,ISBN 978-7-5074-0930-7Richard J. Smith, Mark Gibbs, Paul McFedries 著,毛伟、张文涛 译,Internet漫游指南,人民邮电出版社,1998年. ISBN 978-7-115-06663-3世界是平的,汤马斯·佛里曼 著,2005年出版. ISBN 978-986-80180-9-9内容采用CC BY-SA 3.0授权。浏览量2690 万讨论量9728 帮助中心知乎隐私保护指引申请开通机构号联系我们 举报中心涉未成年举报网络谣言举报涉企侵权举报更多 关于知乎下载知乎知乎招聘知乎指南知乎协议更多京 ICP 证 110745 号 · 京 ICP 备 13052560 号 - 1 · 京公网安备 11010802020088 号 · 京网文[2022]2674-081 号 · 药品医疗器械网络信息服务备案(京)网药械信息备字(2022)第00334号 · 广播电视节目制作经营许可证:(京)字第06591号 · 服务热线:400-919-0001 · Investor Relations · © 2024 知乎 北京智者天下科技有限公司版权所有 · 违法和不良信息举报:010-82716601 · 举报邮箱:jubao@zhihu.
以太网技术_百度百科
术_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10以太网技术播报讨论上传视频Xerox公司创建开发的基带局域网规范本词条由“科普中国”科学百科词条编写与应用工作项目 审核 。以太网技术指的是由Xerox公司创建并由Xerox,Intel和DEC公司联合开发的基带局域网规范。以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。以太网不是一种具体的网络,是一种技术规范。中文名以太网技术外文名Ethernet Technology主要技术CSMA/CD技术目录1定义2背景3技术介绍4分类5关键技术定义播报编辑以太网技术指的是由Xerox公司创建并由Xerox、Intel和DEC公司联合开发的基带局域网规范。传统以太网络使用CSMA/CD(载波监听多路访问及冲突检测技术)技术,并以10M/S的速率运行在多种类型的电缆上。以太网与IEEE802·3系列标准相类似。以太网不是一种具体的网络,是一种技术规范,在IEEE 802.3中定义了以太网的标准协议。 [1]带冲突检测的载波侦听多路访问(CSMA/CD)技术背景播报编辑以太网技术的最初进展来自于施乐帕洛阿尔托研究中心的许多先锋技术项目中的一个。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。 [2]1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日出台。当时业界有两个流行的非公有网络标准令牌环网和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。 [2]梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼里工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。 [2]技术介绍播报编辑以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆10 Base T以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性最好。以太网(Ethernet)是一种计算机局域网组网技术。IEEE制定的IEEE 802.3标准给出了以太网的技术标准。它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环网(token ring)、FDDI和ARCNET。 [1]以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch hub)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detect 即带冲突检测的载波监听多路访问)的总线争用技术。 [1]以太网基于网络上无线电系统多个节点发送信息的想法实现,每个节点必须取得电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有系统能互相鉴别。 [3]由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。已经发现以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要的。分类播报编辑1.快速以太网快速以太网(Fast Ethernet)也就是我们常说的百兆以太网,它在保持帧格式、MAC(介质存取控制)机制和MTU(最大传送单元)质量的前提下,其速率比10Base-T的以太网增加了10倍。二者之间的相似性使得10Base-T 以太网现有的应用程序和网络管理工具能够在快速以太网上使用。快速以太网是基于扩充的IEEE802.3标准。 [4]2.千兆位以太网千兆位以太网是一种新型高速局域网,它可以提供1Gbps的通信带宽,采用和传统10M、100M以太网同样的CSMA/CD协议、帧格式和帧长,因此可以实现在原有低速以太网基础上平滑、连续性的网络升级。只用于Point to Point,连接介质以光纤为主,最大传输距离已达到80km,可用于MAN的建设。 [4]3.万兆以太网万兆以太网技术与千兆以太网类似,仍然保留了以太网帧结构。通过不同的编码方式或波分复用提供10Gbit/s传输速度。所以就其本质而言,10G以太网仍是以太网的一种类型。4.光纤以太网光纤以太网产品可以借助以太网设备采用以太网数据包格式实现WAN通信业务。该技术可以适用于任何光传输网络——光纤直接传输、SDH以及DWDM网络传输。目前,光纤以太网可以实现10Mbps、100Mbps以及1Gbps等标准以太网速度。5.端到端以太网端到端以太网方案以以太网作为接入技术,不但成本低,而且带宽比现行的Cable Modem、ADSL、ISDN、Modem接入都要高,因此不但可以作为一般用户Internet连接,或者多媒体点播或广播用途,更可以作为企业用户实现VPN虚拟私有专网互联使用。关键技术播报编辑CSMA/CD技术带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个信道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网要简单。当某台电脑要发送信息时,必须遵守以下规则:(1)开始。如果线路空闲,则启动传输,否则转到第4步;(2)发送。如果检测到冲突,继续发送数据直到达到最小报文时间 (保证所有其他转发器和终端检测到冲突),再转到第4步;(3)成功传输。向更高层的网络协议报告发送成功,退出传输模式;(4)线路忙。等待,直到线路空闲;(5)线路进入空闲状态。等待一个随机的时间,转到第1步,除非超过最大尝试次数;(6)超过最大尝试传输次数。向更高层的网络协议报告发送失败,退出传输模式。 [5]就像在没有主持人的座谈会中,所有的参加者都通过一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将采用退避指数增长时间的方法(退避的时间通过截断二进制指数退避算法(truncated binary exponential backoff)来实现)。最初的以太网是采用同轴电缆来连接各个设备的。电脑通过一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一根简单网线对于一个小型网络来说还是很可靠的,对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。 [5]因为所有的通信信号都在共用线路上传输,即使信息只是发给其中的一个终端(destination),某台电脑发送的消息都将被所有其他电脑接收。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。 [5]注意事项:CSMA/CD技术不存在10G及以上速率的以太网技术中。 [5]集线器在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米(1,640英尺)。最大距离可以通过以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。 [6]类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,and affixed to a male M or BNC connector.如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。 [6]随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。 [6]第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。非屏蔽双绞线( unshielded twisted-pair cables , UTP )最先应用在星型局域网中,之后在10BASE-T中也得到应用,并最终代替了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了 AUI 成为电脑和集线器的标准界口,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。 [6]采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。 [6]集线器的总吞吐量受到单个连接速度的限制( 10或100 Mbit/s ),这还是考虑在前同步码、帧间隔、头部、尾部和打包上花销最少的情况。当网络负载过重时,冲突也常常会降低总吞吐量。最坏的情况是,当许多用长电缆组网的主机传送很多非常短的帧时,网络的负载仅达到50%就会因为冲突而降低集线器的吞吐量。为了在冲突严重降低吞吐量之前尽量提高网络的负载,通常会进行一些设置工作。桥接交换尽管中继器在某些方面隔离了以太网网段,电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。通过网桥时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。通过记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。象生成树协议这样的控制机制可以协调多个交换机共同工作。早期的网桥要检测每一个数据包,这样,特别是同时处理多个端口的时候,数据转发相对Hub(中继器)来说要慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。大多数现代以太网用以太网交换机代替Hub。尽管布线同Hub以太网是一样的,但是交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的结局隔离异常设备。交换网络典型的使用星型拓扑, 尽管设备工作在半双工模式是仍然是共享介质的多结点网。10BASE-T和以后的标准是全双工以太网,不再是共享介质系统。交换机加电后,首先也像Hub那样工作,转发所有数据到所有端口。接下来,当它学习到每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。这样,线速以太网交换就可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。尽管如此,交换式以太网依然是不安全的网络技术,因为它还很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。当只有简单设备(除Hub之外的设备)接入交换机端口,那么整个网络可能工作在全双工方式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。总的带宽就是链路的2倍(尽管带宽每个方向上是一样的),但是没有冲突发生就意味着允许几乎100%的使用链路带宽。交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备通过信号来协调要使用的速率和双工设置。然而,如果自动协商被禁用或者设备不支持,则双工设置必须通过自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多低端交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。.当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem通过详细的方法检测链路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路。因此如果过高的速率导致电缆不可靠就会导致链路失效。解决方案只有强制通讯端降低到电缆支持的速率。 [7]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000Ethernet(以太网)基本工作原理 - 知乎
Ethernet(以太网)基本工作原理 - 知乎切换模式写文章登录/注册Ethernet(以太网)基本工作原理乐竹每天提醒自己,不要忘记梦想!以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)Ethernet 数据发送流程CMSA/CD的发送流程可以简单概况为4步:先听后发、边听边发、冲突停止、延迟重发。(1)载波侦听过程每个主机在发送数据帧之前,首先要侦听总线的【忙/闲】状态。Ethernet网卡的收发器一直在接收总线上的信号,如果总线上有其他主机发送的信号,那么曼彻斯特解码器的解码时钟一直有输出;如果总线上没有信号发送,那么曼彻斯特(Manchester)解码器的时钟输出为0。Manchester解码器是网卡上的一个组件,解码时钟会根据线路上的信号以曼彻斯特编码解码。曼彻斯特编码因此,Manchester解码器的时钟信号可以反映出总线的【忙/闲】状态。(2)冲突检测方法载波侦听并不能完全消除冲突。———————————————————————————————————————电磁波在同轴电缆中传播速度约为 2×108m/s,如果局域网中两个【相隔最远】主机A和B相距 1000m,那主机A向主机B发送一帧数据要经过。t=\frac{1000}{2\times10^{8}}=5\times10^{-6} s=5\mu s 主机A发送数据后,要经过t后,主机B才接收到这个数据帧。在这5μs的时间内,主机B不知道主机A已经发送数据,它就有可能也向主机A发送数据。出现这种情况,主机A和主机B的这次发送就发生【冲突】。———————————————————————————————————————比较极端的冲突是:主机A向主机B发送数据,当数据信号快要到达主机B时,主机B也发送了数据。等到冲突信号传送回主机A时,已经经过了两倍的传播延迟2t(t=D/V,D为总线传输介质的最大长度,V是电磁波在介质中的传播速度)。冲突的数据帧可以传遍整个缆段,缆段上的主机都可以检测到冲突。缆段被称为【冲突域】,如果超过2t的时间没有检测出冲突,则该主机已取得【总线访问权】,因此将 2t定义为【冲突窗口】。冲突窗口是连接在一个缆段上所有主机能检测到冲突发生的最短时间。由于Ethernet物理层协议规定了总线最大长度,电磁波在介质中的传播速度是确定的,因此冲突窗口的大小也是确定的。最小帧长度与总线长度、发送速率之间的关系———————————————————————————————————————为了保证主机在发送一帧的过程可以检测到冲突,就要求发送一个最短帧的时间要超过冲突窗口的时间。因为帧发送并不是一瞬间全部发送完成,发送延迟 t = 帧长度/发送速率,发送速率一般不会改变,因此要在发送的过程中能检测到冲突需要规定一个最小帧长度最短帧长度为 L_{min} ,主机发送速率为S,发送短帧所需的时间为 L_{min} / S ,冲突窗口的值为2D/V \frac{L_{min}}{S}\geq \frac{2D}{V} 所以可以根据总线长度、发送速率和电磁波传播速度估计最小帧长度。———————————————————————————————————————冲突是指总线上同时出现两个或两个以上的发送信号,它们叠加后的信号波形不等于任何一个主机输出的信号波形。冲突检测有两种方法:比较法 和 编码违例判决法。比较法:主机在发送帧的同时,将其发送信号波形与总线上接收到的信号波形进行比较(信号在总线上是双向传播的,比如主机A、B、C,B发送信号A与C都能接收到)。如果两个信号波形不一致,说明冲突发生。 编码违例判决法:检查从总线上接收的信号波形是否符合曼彻斯特编码规律,不符合则说明发生冲突。64B是Ethernet的最小帧长度:如果一个主机发送一个最小帧,或者一个帧的前64个字节没有检测到冲突,说明该主机已经取得总线发送权,冲突窗口期又称为争用期。发现冲突、停止发送如果主机在发送过程中检测到冲突,主机要进入停止发送,随机延迟后重发的流程。随机延迟重发的第一步是:发送冲突加强干扰序列,保证有足够的冲突持续时间,使局域网中的所有主机都能检测出冲突存在,并立即丢弃冲突帧,减少由于冲突浪费的时间,提高信道利用率。冲突加强干扰序列信号长度为32bit随机延迟重发Ethernet规定一个帧的最大重发次数为16。后退延迟算法是:截止二进制指数后退延迟———————————————————————————————————————算法可表示为: \tau =2 \cdot R \cdot a τ:重新发送所需的后退延迟时间。a:冲突窗口的值。R:随机数,以主机地址为初始值生成随机数R。k:k=min(n,10),如果重发次数n小于10,则k=n,n≥10,则k=10.———————————————————————————————————————后退延迟时间τ到达后,节点将查询判断总线忙、闲状态,重新发送,如果再次遇到冲突,则重发次数+1,如果重发次数超过16时,表示发送失败,放弃发送该帧。CSMA/CD方法被定义为一种随机争用型介质控制访问方法。Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别。———————————————————————————————————————Ethernet V2.0是在DEC、Intel(英特尔)、Xeror公司合作研究的,所以也称Ethernet V2.0帧结构为DIX帧结构(公司首字母)IEEE802.3标准对Ethernet帧结构也做出了规定,通常称之为 802.3帧———————————————————————————————————————(1)前导码 1. DIX帧的前8B是前导码,每个字节都是10101010。接收电路通过提取曼彻斯特编码的自含时钟,实现收发双方的比特同步。 说人话就是:编码时故意搞个特别的码在前面,通过长度告知解码器后面有货送来,注意接收。 通过前导码就可判断信号是有用信号还是干扰信号,否则忽略不解码。 2. 802.3帧的前导码,每个字节都是10101010。但是有一个10101011的帧前定界符。前56位(7B×8)前导码是为了保证在接收【目的地址】时,已经进入【稳定接收状态(识别出这个是有用信号)】在62位1010…1010比特序列后出现两个11,两个11后就是Ethernet帧的目的地址字段。 3. 前导码只是为了实现收发双方的比特同步与帧同步,在接收后不需要保留,也不计入帧头长度。(2)类型字段和长度字段 1. DIX帧的类型字段表示网络层使用的协议类型。——————————————————————————————————————— 例如:类型字段=0x0800表示网络层使用IPv4协议、类型字段=0x86DD表示网络层使用IPv6协议。——————————————————————————————————————— 2. Ethernet帧最小长度为64B,除去帧头(目的地址+源地址+源地址),数据字段最短为46B。数据字段最长为1500B,因此数据字段长度在46~1500B之间。 3. DIX帧没有长度字段,所以接收端等待物理线路上没有电平的跳变(帧发送结束),除去4B的校验字段,就能取出数据字段。(3)目的地址和源地址字段 1. 目的地址和源地址表示帧的接收节点和发送节点的硬件地址。 2. 硬件地址也叫物理地址、MAC地址、Ethernet地址。 3. 源地址必须是6B的MAC地址。 4. 目的地址可以是单播地址(发送给单一主机)、多播地址(发送给一部分主机)、广播地址(发送给所有主机)。(4)帧校验字段 1. 帧校验字段FCS( Frame Check Sequence)采用32位的CRC校验。 2. CRC校验范围:目的地址、源地址、长度、LLC(Logical Link Control:逻辑链路控制)数据等字段。Ethernet接收流程分析主机主要不发送数据帧就处于接收状态。帧目的地址检查: 1. 目的地址是单一主机的物理地址,并且是本主机地址—>接收。 2. 目的地址是组地址,并且本主机属于该组—>接收。 3. 目的地址是广播地址—>接收。 4. 如果以上3种目的地址都与本主机地址不匹配,丢弃该接收帧。帧接收: 1. CRC校验正确。 2. 帧长度正确。 3. 如果1、2都正确,将帧中的数据发送到网络层,否则报告”接收失败“进入帧结束状态。帧校验: 1. CRC校验正确,但是帧长度不对,则报告“帧长度错”。 2. 如果校验出错,判断接收帧是不是8bit的整数倍(字段长度的单位是字节,1B=8bit,接收帧长度正常的话肯定是8bit的整数倍)☆ 如果不是8bit的整数倍,则报告“帧比特出错”。☆ 如果没有发现比特丢失或者比特位对位错,则报告“帧校验错”。 3. 进入结束状态。帧间最小间隔 1. 为保证网卡能正确、连续的处理接收帧,要规定一个帧间最小间隔 (网卡处理接收帧要时间、虽然很短) 2. 规定Ethernet帧的最小间隔为9.6μsEthernet网卡网卡由三部分组成:网卡与传输介质的接口(RJ45)、Ethernet数据链路控制器、网卡与主机的接口(主板的I/O扩展槽)。Ethernet数据链路控制器的功能:实现发送数据编码、接收数据解码、CRC产生与校验、曼彻斯特编码与解码、CSMA/CD介质访问控制。网卡的物理地址写入网卡的只读存储器中,不会与世界上任何一台其他的计算机重复。编辑于 2022-08-10 18:41Ethernet以太网(Ethernet)工作原理赞同 194 条评论分享喜欢收藏申请
基础知识——以太网(Ethernet )-CSDN博客
>基础知识——以太网(Ethernet )-CSDN博客
基础知识——以太网(Ethernet )
季秊爱桃楸
已于 2023-07-15 13:45:51 修改
阅读量3.7k
收藏
36
点赞数
分类专栏:
网络路由
文章标签:
网络协议
于 2023-07-14 14:40:43 首次发布
原文链接:https://blog.csdn.net/weixin_40274679/article/details/105995323?ops_request_misc=&request_id=b97d66480b3a426d9509466504684f58&biz_id=&utm_medium=distribute.pc_search_result.none-task-blog-2~blog~koosearch~default-2-105995323-null-null.268^v1^control&utm_t
版权
网络路由
专栏收录该内容
1 篇文章
1 订阅
订阅专栏
目录
以太网概述
以太网——标准和实施
以太网—— 第1层和第2层
逻辑链路控制——连接到上层
MAC——获取到介质的数据
以太网的物理实现
以太网——通过LAN的通信
以太网历史
以太网冲突管理
发展到 1Gbps 及以上速度
以太网帧
帧——封装数据包
以太网MAC 地址
十六进制计数和编址
另一个编址层
以太网单播、组播和广播
以太网MAC
以太网中的MAC
CSMA/CD – 过程
以太网定时
帧间隙和回退
以太网物理层
以太网物理层概述
10 和 和 100 Mbps 以太网
1000 Mbps 以太网
以太网—— 未来选择
集线器和交换机
传统以太网—— 使用集线器
以太网 ——使用交换机
交换机—— 选择性转发
地址解析协议 (ARP)
ARP 过程 – 将IP映射到MAC地址
ARP 过程—— 目的主机在本地网络外
ARP 过程 – 删除地址映射
ARP 广播 – 问题
以太网概述
以太网——标准和实施
1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。 1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。 以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。
以太网—— 第1层和第2层
以太网在第 1 层上涉及信号、在介质中传输的比特流、将信号放到介质上的物理组件以及各种拓扑,它在设备之间的通信中扮演主要角色。
数据链路子层极大地促进了技术兼容性和计算机通信。
(1)MAC 子层负责将要用于传送信息的物理组件,并且准备通过介质传输的数据。 (2)逻辑链路控制 (LLC) 子层保持通信过程所用物理设备的相对独立性。
逻辑链路控制——连接到上层
对于以太网,IEEE 802.2 标准规范 LLC 子层的功能,而 802.3 标准规范 MAC 子层和物理层的功能。
LLC 子层获取网络协议数据(通常是IPv4 数据包)并加入控制信息,帮助将数据包传送到目的节点。
第 2 层通过 LLC 与上层通信。
逻辑链路控制(LLC)
1.建立与上层的连接
2.将网络层数据包封装成帧
3.标识网络层协议
4.保持物理设备的相对独立性
MAC——获取到介质的数据
介质访问控制 (MAC) 是数据链路层以太网子层的下半层,由硬件(NIC)实现 以太网 MAC 子层主要有两项职责 (1)数据封装 (2)介质访问控制
数据封装:帧定界、编址、错误检测
介质访问控制:对于将帧放入介质中和从介质中取下帧实施控制、介质恢复
以太网的物理实现
以太网的成功离不开以下因素: (1)维护的简便性 (2)整合新技术的功能 (3)可靠性 (4)安装和升级成本 在当今的网络中,以太网使用UTP 铜缆和光缆通过集线器和交换机等中间设备连接网络设备。
以太网——通过LAN的通信
以太网历史
以太网技术基础最早起步于 1970 年,是在一个叫做 Alohanet 的计划中提出来的。 以太网第一个版本融入了一种称为 载波侦听多路访问/ 冲突检测 (CSMA/CD) 的介质访问方法。 CSMA/CD 负责管理多台设备通过一个共享物理介质通信时产生的问题。
以太网的早期版本使用同轴电缆在总线拓扑中连接计算机。 粗缆 (10BASE5) 细缆 (10BASE2) 最初的同轴粗缆和同轴细缆等物理介质被早期的 UTP 类电缆所取代。 物理拓扑也改为使用集线器的星型拓扑。
以太网冲突管理
(1)传统的以太网---半双工 基于共享的介质,每次只有一个站点能够成功发送。 随着更多的设备加入以太网,帧的冲突量大幅增加。
(2)当前的以太网---全双工 交换机可以隔离每个端口,只将帧发送到正确的目的地(如果目的地已知),而不是发送每个帧到每台设备,数据的流动因而得到了有效的控制。
发展到 1Gbps 及以上速度
一些设计和安装都很优秀的现代网络,其设备和电缆可能只需要略加升级,便能以更高的速度运行。这种功能具有降低网络总拥有成本的优点。
在以太网中使用光缆后,电缆连接距离大幅延长,使 LAN 与 WAN 之间的差异没那么明显了。 以太网最初局限于单一建筑物中的 LAN 电缆系统,后来扩展到建筑物之间,而现在可以覆盖一个城市,称之为城域网 (MAN)。
以太网帧
帧——封装数据包
以太网帧结构向第 3 层 PDU 添加帧头和帧尾来封装所发送的报文。 以太网帧有两种样式:IEEE 802.3(原始)和修订后的 IEEE 802.3(Ethernet)。
“前导码”(7 个字节)和“帧首定界符 (SFD)”(1 个字节)字段用于同步发送设备与接收设备。
“目的 MAC 地址”字段(6 个字节)是预定接收方的标识符。
“源 MAC 地址”字段(6 个字节)标识帧的源网卡或接口。
“长度/类型”字段(2 个字节)定义帧的数据字段的准确长度。
“数据”和“填充位”字段(46 - 1500 个字节)包含来自较高层次的封装数据(一般是第 3 层 PDU 或更常见的 IPv4 数据包)。
“帧校验序列 (FCS)”字段(4 个字节)用于检测帧中的错误。它使用循环冗余校验(CRC)。发送设备在帧的 FCS 字段中包含 CRC 的结果。
以太网MAC 地址
为协助确定以太网中的源地址和目的地址,创建了称为介质访问控制 (MAC) 地址的唯一标识符。 MAC 编址作为第 2 层 PDU 的一部分添加上去。 以太网 MAC 地址是一种表示为 12 个十六进制数字的 48 位二进制值。
IEEE 要求厂商遵守两条简单的规定: 分配给网卡或其它以太网设备的所有 MAC 地址都必须使用厂商分配的 OUI 作为前 3个字节。 OUI 相同的所有 MAC 地址的最后 3 个字节必须是唯一的值(厂商代码或序列号)。 MAC 地址通常称为烧录地址 (BIA),因为它被烧录到网卡的 ROM(只读存储器)中。
十六进制计数和编址
十六进制 ("Hex") 是以 16 为基数的计数系统使用数字 0 到 9 和字母 A 到 F。 十六进制通常以 0x 前导的文本值(如 0x73)或 16 为下标的值表示。
十六进制用于表示以太网 MAC 地址和 IP V6 地址。. 你已经在 Wireshark 的 Packets Byte(数据包字节)窗格见过十六进制,在那里十六进制用于表示帧和数据包中的二进制值。
另一个编址层
OSI 数据链路层(第 2 层)物理编址,是作为以太网 MAC 地址实现的,用于通过本地介质传输帧。 IPv4 地址等网络层(第 3 层)地址普遍存在的源和目的端都理解的逻辑编址。.
以太网单播、组播和广播
在以太网中,第 2 层单播、组播和广播通信会使用不同的 MAC 地址。 单播 MAC 地址是帧从一台发送设备发送到一台目的设备时使用的唯一地址。
发送广播时,数据包以主机部分全部为一 (1) 的地址作为目的 IP 地址。这种地址计数法表示本地网络(广播域)中的所有主机都将接收和处理该数据包。 许多网络协议,如动态主机配臵协议 (DHCP) 和地址解析协议 (ARP) 等,都使用广播。
组播地址允许源设备向一组设备发送数据包。 属于某一组播组的设备都被分配了该组播组 IP 地址。组播地址的范围为 224.0.0.0到 239.255.255.255。
以太网MAC
以太网中的MAC
以太网使用载波侦听多路访问/冲突检测 (CSMA/CD) 来检测和处理冲突,并管理通信的恢复。 设备可以确定能够发送的时间。当设备检测到没有其它计算机在传送帧或载波信号时,就会发送其要发送的内容。
CSMA/CD – 过程
载波侦听---在 CSMA/CD 访问方法中,要发送报文的所有网络设 备在发送之前必须侦听。多路访问---如果设备之间的距离导致一台设备的信号延时,则另一台设备可能没有检测到信号,从而也开始发送。 冲突检测---当设备处于侦听模式时,可以检测共享介质中发生的冲突。 堵塞信号和随机回退---发送设备检测到冲突之后,将发出堵塞信号。这种堵塞信号用于通知其它设备发生了冲突,以便它们调用回退算法。回退算法将使所有设备在随机时间内停止发送,以让冲突消除。
载波侦听多路访问/冲突检测 (CSMA/CD)
1.在传输之前侦听——监控介质中是否有流量
2.在传输之前侦听——检测到载波信号
3.等待指定的时间——信号通过。稍后重试
4.在传输之前侦听——监控介质中是否有流量
5.未检测到载波信号——计算机传输
6.在传输之前侦听——监控介质中是否有流量
7.未检测到载波信号——计算机传输
8.发送冲突
9.发出堵塞信号
10.回退定时器——稍后重试
如图所示,集线器互连成一个称为“扩展星型”的物理拓扑。扩展星型可以极大地扩展冲突域。 通过一台集线器或一系列直接相连的集线器访问公共介质的相连设备称为冲突域。冲突域也称为网段。 集线器和中继器因此会影响冲突域大小的增长。
以太网定时
发送的电信号需要一定的时间(延时)传播(传送)到电缆。信号路径中的每台集线器或中继器在将比特从一个端口转发到下一个端口时,都会增加延时时间。 这种累加的延时将会增大冲突发生的机率,因为侦听节点可能会在集线器或中继器处理报文时跳变成发送信号。
吞吐量速度为 10 Mbps 及以下的以太网通信是异步通信。这种环境下的异步通信意味着,每台接收设备将使用 8 个字节的定时信息来使接收电路与传入的数据同步,然后丢弃这 8 个字节。 吞吐量为 100 Mbps 及更高的以太网通信是同步通信。这种环境下的同步通信表示不需要定时信息。但是,由于兼容性的原因“前导码”和“帧首定界符 (SFD)”字段仍然存在。
不管介质速度如何,将比特发送到介质并在介质上侦听到它都需要一定的时间。这段时间称为比特时间。 实际计算的碰撞槽时间刚好比在冲突域的最远两点之间发送所需的理论时间长,与另一个时间最近的发送发生冲突,然后让冲突碎片返回发送站点而被检测到。
帧间隙和回退
以太网标准要求两个非冲突帧之间有最小的间隙。这样,介质在发送上一个帧后将获得稳定的时间,设备也获得了处理帧的时间。 此时间称为帧间隙,其长度是从一个帧的 FCS 字段最后一位到下一个帧的“前导码”第一位。
只要一检测到冲突,发送设备就会发送一个 32 位“堵塞”信号以强调该冲突。这可确保 LAN 中的所有设备都能检测到冲突。
回退定时:冲突发生后,所有设备都让电缆变成空闲(各自等待一个完整的帧间隙),发送有冲突的设备必须再等待一段时间,然后才可以重新发送冲突的帧,这段等待时间会逐渐增长。
以太网物理层
以太网物理层概述
以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义 了四种数据速率: (1)10 Mbps - 10Base-T 以太网 (2)100 Mbps - 快速以太网 (3)1000 Mbps - 千兆以太网 (4)10 Gbps - 万兆以太网
10 和 和 100 Mbps 以太网
主要的 10 Mbps 以太网包括: (1)使用同轴粗缆的 10BASE5 (2)使用同轴细缆的 10BASE2 (3)使用 3 类/5 类非屏蔽双绞线电缆的 10BASE-T
100 Mbps 以太网也称为快速以太网,可以使用双绞线铜缆或光纤介质来实现。最常见的 100 Mbps 以太网有: (1)使用 5 类或更高规格 UTP 电缆的 100BASE-TX (2)使用光缆的 100BASE-FX
1000 Mbps 以太网
千兆以太网标准的开发产生了 UTP 铜缆、单模光缆和多模光缆的规格。 1000BASE-T 以太网使用全部四对 5 类或更高规格的 UTP 电缆提供全双工发送。
与 UTP 相比,光纤千兆以太网 - 1000BASE-SX 和 1000BASE-LX 有以下优势:无杂信、体积小,并且无需中继的距离远,带宽高。
以太网—— 未来选择
IEEE 802.3ae 标准经过改编,纳入了 10 Gbps - 通过光缆进行的全双工发送。 万兆以太网 (10GbE) 在不断发展,不仅用于 LAN,而且用于 WAN 和 MAN。 千兆以太网现已得到广泛采用,万兆产品也在不断增加,但 IEEE 和万兆以太网联盟仍未继续研究 40、100 甚至 160-Gbps 的标准。
集线器和交换机
传统以太网—— 使用集线器
传统以太网使用集线器来连接 LAN 网段中的节点。集线器不执行任何类型的通信过滤,而是将所有比特转发到其连接的每台设备。
以太网 ——使用交换机
交换机可以将 LAN 细分为多个单独的冲突域,其每个端口都代表一个单独的冲突域,为该端口连接的节点提供完全的介质带宽。
在所有节点直接连接到交换机的 LAN 中,网络的吞吐量大幅增加。这种增加主要缘于三个原因: (1)每个端口有专用的带宽 (2)没有冲突的环境 (3)全双工操作
交换机—— 选择性转发
以太网交换机选择性地将个别帧从接收端口转发到连接目的节点的端口。 交换机维护着一个表,称为MAC 表。该表将目的 MAC 地址与用于连接节点的端口进行比对。
以太网 LAN 交换机采用五种基本操作来实现其用途: 获取、过期、泛洪、选择性转发、过滤
地址解析协议 (ARP)
ARP 过程 – 将IP映射到MAC地址
ARP 协议具有两项基本功能: (1)将 IPv4 地址解析为 MAC 地址;(2)维护映射的缓存
具体的ARP转发过程可以看我之前的文章《网络基础知识之ARP协议》
ARP 过程—— 目的主机在本地网络外
如果目的 IPv4 主机不在本地网络上,则源节点需要将帧传送到作为网关的路由器接口,或用于到达该目的地的下一跳。
源节点将使用网关的 MAC 地址作为帧(其中含有发往其它网络上主机的 IPv4 数据包)的目的地址。
使用 ARP 代理时,就好像路由器接口是具有 ARP 请求所请求的 IPv4 地址的主机一样。 另一种使用代理 ARP 的情况是:主机认为它已经直接连接到目的主机所在的逻辑网络。如果主机配臵了错误的掩码,通常会发生这种情况。 还有一种使用代理 ARP 的情况是主机没有配臵默认网关。代理 ARP 可以帮助网络中的设备到达远程子网,而无需配臵路由或默认网关。
ARP 过程 – 删除地址映射
对于每台设备,ARP 缓存定时器将会删除在指定时间内未使用的 ARP 条目。具体时间取决于设备及其操作系统。
ARP 广播 – 问题
介质开销 安全性--ARP 欺骗/ ARP 毒化
优惠劵
季秊爱桃楸
关注
关注
0
点赞
踩
36
收藏
觉得还不错?
一键收藏
知道了
0
评论
基础知识——以太网(Ethernet )
1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义了四种数据速率:(1)10 Mbps - 10Base-T 以太网(2)100 Mbps - 快速以太网。
复制链接
扫一扫
专栏目录
参与评论
您还未登录,请先
登录
后发表或查看评论
以太网是什么?看完明白了【史上最详细介绍】
xiaomanong2的博客
05-12
3万+
以太网是什么?
以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。
以太网是应用最广泛的
FPGA实现以太网(一)——以太网简介
m0_52889836的博客
12-28
1031
以太网(Ethernet)是当今现有局域网采用的最通用的通信协议标准, 该标准定义了在局域网中采用的电缆类型和信号处理方法。以太网凭借其成本低、通信速率高、抗干扰性强等优点被广泛应用在网络远程监控、 交换机、工业自动化等对通信速率要求较高的场合。以太网是一种产生较早,使用相当广泛的,被电气与电子工程师协会( IEEE)所采纳作为的标准。以太网的分类有标准以太网(10Mbit/s)、 快速以太网(100Mbit/s)和千兆以太网( 1000Mbit/s)。
什么是以太网?为什么要叫做“以太”网?
lifengxun20121019的专栏
12-24
8525
以太网是当今现有局域网采用的最通用的通信协议标准,组建于七十年代早期。Ethernet(以太网)是一种传输速率为10Mbps的常用局域网(LAN)标准。在以太网中,所有计算机被连接一条同轴电缆上,采用具有冲突检测的载波感应多处访问(CSMA/CD)方法,采用竞争机制和总线拓朴结构。基本上,以太网由共享传输媒体,如双绞线电缆或同轴电缆和多端口集线器、网桥或交换机构成。在星型或总线型配置结构中,集线器
整理加解释:以太网、快速以太网、千兆以太网和万兆以太网分别的概念和区分 大详解
publicstaticfinal的博客
07-23
6672
**
以太网是什么
**
以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。
以太网是应用最
以太网Ethernet通信协议
STATEABC的博客
08-07
7353
以太网协议(Ethernet Protocol)是一种广泛应用于局域网(LAN)和广域网(WAN)的计算机网络通信协议。它是一种基于共享介质的局域网技术,最早由Xerox、Intel和Digital Equipment Corporation(DEC)于1970年代开发,并在1980年代初由IEEE标准化为IEEE 802.3。以太网根据最大传输速率的不同可以分为标准的以太网(10Mbit/s)、快速以太网(100Mbit/s)、千兆以太网 (1000Mbit/s)和万兆以太网(10Gbit/s)。
以太网(Ethernet)相关基础知识
Already8888的博客
05-17
1万+
以太网Ethernet
•Ethernet Cabling
•Manchester Encoding
•The Ethernet MAC Sublayer Protocol
•The Binary Exponential Backoff Algorithm
•Ethernet Performance
•Switched Ethernet
以太网电缆
从上到下,分别是粗同轴电缆、细同轴电缆、双绞线、光纤
术语10base5的含义是:它使用基带信号运行在10Mbps的...
计算机网络---以太网
qq_63976098的博客
09-16
1495
以太网;以太网传输介质与拓扑结构的发展;10BASE-T以太网;适配器&MAC地址;高速以太网
以太网是什么要怎么连接电脑
qq_29508575的博客
06-24
1万+
以太网其实就是我们平时说的网络,它是属于一种计算机局域网的技术,也就是我们平时电脑连接的宽带网络。想要依靠电脑获取互联网信息,就必须给电脑连接以太网,那么电脑要怎么连接以太网呢?这个过程很简单。在这里1、在把电脑打开后,点击设置图标把电脑设置打开。2、在Windows设置中找到 网络和internet 点击进入。3、在左侧找到以太网点击,然后选择网络连接就行了,如果电脑是初次连接以太网的话,需要找到你的宽带并输入密码进行连接。4、如果需要连接无线网络也就是wifi的话,就点击WLAN,...
接口协议(四):以太网(Ethernet)学习(一):协议
热门推荐
qq_40483920的博客
08-27
4万+
目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议
因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。
一、以太网
以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。
最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子
什么是以太网
digitalkee的博客
03-26
1万+
版本1:
一般都是以集线器或交换机作为核心节点,再从集线器或交换机拉很多根网线出来,把各台主机连接到这个核心节点上。
以太网(Ethernet)是最广泛安装的局域网技术。正如现在在IEEE 802.3标准中指出的,以太网原来由Xerox开发,后来由Xerox, DEC和Intel共同开发的。以太网一般使用同轴电缆和特种双绞线。最通常的以太网系统是10BASE-T,它的传输速率可达10 Mbps。...
10Mbps以太网Ethernet的几种形式分别介绍
10-01
本文将详细介绍10Mbps以太网Ethernet的几种形式,需要了解的朋友可以参考下
计算机网络基础——以太网
03-24
西门子公司对于以太网的视频教程.详细的介绍了以太网和网络基础和深入知识,可以值得看一看。
以太网基础知识.ppt
07-18
以太网原理,讲解以太网的发展史,是很好的入门资料,
android 以太网 添加设置Ethernet
11-27
android在设置中添加以太网ethernet方法, 在可以是学习框架的一种好方法。
接收端编程、UDP编程练习、wireshrak抓包工具、UDP包头
weixin_71850179的博客
03-08
783
功能:从套接字中接收数据参数:sockfd:套接字文件描述符buf:存放数据空间首地址flags:属性,默认为0;src_addr:存放IP地址信息空间的首地址addrlen:存放接收到ip地址大小空间的首地址、返回值:成功返回实际接收字节数,失败返回-1;
Day 7.UDP编程、不同主机之间用网络进行通信
2201_75392588的博客
03-06
800
功能:从套接字中接受数据参数: sockfd:套接字文件描述符buf:存放数据空间首地址flags:属性 默认为0src_addr:存放IP地址信息的空间首地址addrlen:存放接收到IP地址大小空间的首地址返回值:成功返回实际接收到的字节数;失败返回-1;
【计算机网络】UDP/TCP 协议
最新发布
YoungMLet的博客
03-12
2904
认识传输层中的UDP/TCP协议,了解UDP协议的报文格式和特点,重点理解TCP协议,分别从TCP协议段格式、确认应答机制、超时重传机制、连接管理机制(三次握手四次挥手)、流量控制、滑动窗口、延迟应答、捎带应答和拥塞控制理解TCP协议!最后简单再理解面向字节流概念,以及面向字节流延申出来的粘包问题,和TCP的三种异常情况!
计算机网络-网络应用服务器(二)
m0_74408723的博客
03-07
1445
Virtual Machine ware,中文名为“威睿”,虚拟机软件,可以使你在一台机器上同时运行两个或更多DOS、Windows、Linux系统,每个操作系统你都可以进行虚拟的分区、配置而不影响真实硬盘的数据,比较适合学习和测试。在使用上,这台虚拟机和真正的物理主机没有太大的区别,都需要分区、格式化、安装操作系统、安装应用程序和软件,总之,一切操作都跟一台真正的计算机一样。
spe标准系列频率以太网协议
06-09
SPE (Single Pair Ethernet)是一种新兴的以太网标准,其标准系列包括了以下几个频率:
1. IEEE 802.3cg: 该标准规定了在10 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于工业控制和汽车应用等领域。
2. IEEE 802.3bw: 该标准规定了在100 Mbit/s的速率下,SPE可以通过15米的单对电缆进行通信,适用于车载应用和智能家居等领域。
3. IEEE 802.3bu: 该标准规定了在1 Gbit/s的速率下,SPE可以通过40米的单对电缆进行通信,适用于工业自动化、智能交通和医疗设备等领域。
4. IEEE 802.3bz: 该标准规定了在2.5 Gbit/s和5 Gbit/s的速率下,SPE可以通过100米的单对电缆进行通信,适用于数据中心、智能楼宇和数字家庭等领域。
以上标准系列频率的制定,使得SPE在不同的应用场景下都能够提供高速率、低成本、小型化和低功耗等优点,推动了SPE技术的快速发展和广泛应用。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
季秊爱桃楸
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
3
原创
31万+
周排名
154万+
总排名
2万+
访问
等级
146
积分
22
粉丝
12
获赞
0
评论
205
收藏
私信
关注
热门文章
车规级芯片IC等级及其特点
4145
基础知识——以太网(Ethernet )
3754
1、硬件--LDO参数解读、特性、参考设计
3348
车载以太网基础知识介绍(MAC/PHY/MII解释对比)
2636
晶振详解之测试
2060
分类专栏
智能座舱
网络路由
1篇
硬件设计
14篇
杂七杂八
1篇
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
车规级芯片IC等级及其特点
OSI七层模型介绍
车载以太网基础知识介绍(MAC/PHY/MII解释对比)
2023年1篇
2021年1篇
2020年15篇
目录
目录
分类专栏
智能座舱
网络路由
1篇
硬件设计
14篇
杂七杂八
1篇
目录
评论
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
以太网(Ethernet)技术的理解!!_1.5mb/s能不能用12.5mb/s以太网实时传输-CSDN博客
>以太网(Ethernet)技术的理解!!_1.5mb/s能不能用12.5mb/s以太网实时传输-CSDN博客
以太网(Ethernet)技术的理解!!
最新推荐文章于 2023-07-14 14:40:43 发布
@tzk
最新推荐文章于 2023-07-14 14:40:43 发布
阅读量1.7k
收藏
2
点赞数
1
分类专栏:
网络的基本知识
文章标签:
以太网
ethernet
网速的计算
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Light_Travlling/article/details/101777423
版权
网络的基本知识
专栏收录该内容
28 篇文章
2 订阅
订阅专栏
目前最流行的物理和数据链路层协议是以太网(ethernet)
以太网是如何工作的?
以太网的传输速率
10-Mbps、100-Mbps、 1000Mbps、10-Gbps 我们通常会有一个误区,大家都知道: B 代表 字节(Byte) b 代表 位(bit) 1B = 8 b 1MB = 1024KB = 1024*1024 B = 1024 * 1024 8bit 而1GB = 1024 MB 但是这里的Mbps中 ”M“ 指的是 兆(1000; “b” 指的是 比特 (bit位);所以说 10Mbps = 10 000 000bps,也就是每秒传输10 000 000bit的数据。 例如:一个100Mbps的以太网传输最大的1526字节的包需要的最大传输时间 = 15268b/100 000 000 = 122μm
(拓展)通常说的网速怎么理解呢?
平时所说的百兆局域网(100Mbps)与我们习惯的说法不一样,我们常喜欢使用字节这个 基本计量,MB/s,所以由 Mbps转向MB/s 还得进行除8的运算,即100Mbps = 12.5MB/s 所以现在就记得:以后看到的说多少多少网速,记得除以8就是你手机上网的显示最高网速,由于各种限制,你的网速肯定也达不到那个数值(12.5MB/s)
优惠劵
@tzk
关注
关注
1
点赞
踩
2
收藏
觉得还不错?
一键收藏
知道了
1
评论
以太网(Ethernet)技术的理解!!
目前最流行的物理和数据链路层协议是以太网(ethernet)以太网是如何工作的?以太网的传输速率10-Mbps、100-Mbps、 1000Mbps、10-Gbps我们通常会有一个误区,大家都知道:B 代表 字节(Byte)b 代表 位(bit)1B = 8 b1MB = 1024KB = 1024*1024 B = 1024 * 1024 8bit 而1GB = ...
复制链接
扫一扫
专栏目录
EthernetIP简介
11-02
与Modbus相比,EtherNet/IP是一个更现代化的标准协议。由工作组ControlNet International与ODVA在20世纪90年代合作设计。EtherNet/IP是基于通用工业协议(Common Industrial Protocol,CIP)的。CIP是一种由ODVA支持的开放工业协议,它被使用在诸如DeviceNet和ControlNet以及EtherNet/IP等串行通信协议中。美国的工控设备制造商Rockwell/Allen-Bradley已经围绕EtherNet/IP进行了标准化,其他厂商如Omron也在其设备上支持了EtherNet/IP。
Ethernet/IP汇总
10-19
Ethernet/IP汇总, 个人收集最新内容。工业控制协议。
1 条评论
您还未登录,请先
登录
后发表或查看评论
通信与网络中的EPA工业以太网技术!
12-09
1、EPA简介 EPA实时以太网,是一种全新的适用于工业现场设备的开放性实时以太网标准,EPA将大量成熟的IT技术应用于工业控制系统,利用高效、稳定、标准的以太网和UDP/IP协议的确定性通信调度策略,为适用于现场设备的实时工作建立了一种全新的标准。这一项目得到了中国政府“863”高科技研究与发展计划的支持。 目前,由浙江大学、浙大中控`共同主持,联合中国科学院沈阳自动化所、清华大学、大连理工大学、重庆邮电学院、上海工业自动化仪表研究所、北京华控技术有限责任公司、机械工业仪器仪表综合技术经济研究所等共同起草制定的《用于工业测量与控制系统的EPA系统结构与通信规范》已经通过了TC12
通用工业协议(EtherNet/IP) 例程
04-08
这是罗克韦尔的EtherNet/IP协议示例,有代码,编译结果,参考文档等等内容。
以太网(Ethernet)相关基础知识
Already8888的博客
05-17
1万+
以太网Ethernet
•Ethernet Cabling
•Manchester Encoding
•The Ethernet MAC Sublayer Protocol
•The Binary Exponential Backoff Algorithm
•Ethernet Performance
•Switched Ethernet
以太网电缆
从上到下,分别是粗同轴电缆、细同轴电缆、双绞线、光纤
术语10base5的含义是:它使用基带信号运行在10Mbps的...
基础知识——以太网(Ethernet )
季秊爱桃楸的博客
07-14
3768
1980 年,Digital Equipment Corporation、Intel 和 Xerox (DIX) 协会发布了第一个以太网标准。1985 年,本地和城域网的电气电子工程师协会 (IEEE) 标准委员会发布了 LAN 标准。以太网在 OSI 模型的下两层,也就是 数据链路层和 物理层上运行。以太网遵守 IEEE 802.3 标准。目前为通过光缆和双绞线电缆的运行定义了四种数据速率:(1)10 Mbps - 10Base-T 以太网(2)100 Mbps - 快速以太网。
接口协议(四):以太网(Ethernet)学习(一):协议
热门推荐
qq_40483920的博客
08-27
4万+
目录一、以太网二、网络模型三、以太网数据包格式以太网帧格式三、TCP/IP协议簇1、IP协议2、UDP协议
因为没有做过以太网的项目,也没有进行过以太网通信测试,本片博客仅仅是对以太网协议极小一部分的学习了解。如有不当之处,还请指正。
一、以太网
以太网是一种产生较早,使用相当广泛的局域网技术,局域网就是一个区域的网络互联,可以使办公室也可以是学校等等,大小规模不一。
最初是由Xerox(施乐)公司创建(大概是1973年诞生)并由Xerox、 Intel和DEC公司联合开发的基带局域网规范,后来被电气与电子
把Ethernet(以太网)基本工作原理说清楚
m0_52733659的博客
11-19
6813
文章目录Ethernet 数据发送流程(1)载波侦听过程(2)冲突检测方法发现冲突、停止发送随机延迟重发Ethernet帧结构Ethernet V2.0标准 和 IEEE 802.3标准的Ethernet帧结构的区别前导码类型字段和长度字段Ethernet帧结构分析目的地址和源地址字段帧校验字段Ethernet接收流程分析Ethernet网卡
“以太”来源于19世纪物理学家解释光在空间中传播的介质:“以太”
以太网采用的介质控制方法是:CSMA/CD(带有冲突检测的载波侦听多路访问)
Etherne
互联网Internet和以太网Ethernet的区别大家懂,说说看???
无敌兔0x01
12-20
1万+
互联网
互联网(Internet)是一个网络的网络,它是由从地方到全球范围内几百万个私人的,政府的,学术界的,企业的和政府的网络所构成,通过电子,无线和光纤网络技术等等一系列广泛的技术联系在一起。
以太网
以太网(Ethernet)是为了实现局域网通信而设计的一种数据链路层技术,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌...
800G 112Gb/S(II), Terabit Ethernet – How? (Part2)
专注有线以太网性能测试--丹麦信雅纳网络(Xena Networks)
01-28
2737
围绕"Terabit/800G/1.6TbE/112G PAM4/802.3CK/超高速"以太网接口进行展开
Terabit Ethernet – Why讨论了推动太比特以太网发展的商业驱动因素
Terabit Ethernet – How讨论新的太比特以太网解决方案的技术驱动因素
Terabit Ethernet - What围绕讨论信雅纳(Xena)在800G以太网测试技术解决方案
Terabit Ethernet- Where围绕讨论"224Gb/S,1.6TbE,相干共封装光学(CPO)"未来趋势
FPGA通信第一篇--USB2.0
CHN_Joker的博客
06-17
5306
FPGA通信第一篇--USB2.0
以太网口差分电平_以太网接口学习笔记
weixin_29469195的博客
01-02
6259
英文:Ethernet中文:以太网标准号:IEEE802.3/802.3u/802.3z/802.3ab/802.3ae标准制定与维护:IEEE 国际电气和电子工程师协会网址:www.ieee.org10BASE2: 采用细同轴电缆接口的IEEE 802.3 10Mb/s物理层规格 (参见 IEEE 802.3Clause 10.)10BASE5: 采用粗同轴电缆接口的IEEE 802.3 10M...
以太网(Ethernet)入门了解
公众号:风景邮递Yuan的博客
07-13
4383
以太网是一种标准化的网络通信协议,它定义了在网络上传输数据的方式。以太网使用一种称为载波侦听多路访问(CSMA/CD)的机制来避免数据冲突。以太网使用双绞线作为物理传输介质,可以在短距离内实现高速数据传输。以太网是一种重要的局域网通信协议,自1970年代中期问世以来,已经得到了广泛应用和普及。随着技术的进步和应用的发展,以太网不断演进和完善,并将在未来继续发挥重要作用。通过深入了解和学习本站其他模板样例文章的内容可以帮助我们更好地理解该领域的相关知识结构和表达方式;
USB 之一 USB2.0 规范详解 第一部分
技术干货
04-16
2万+
注意
对于物理特性仅做简单说明
主要是针对 USB 2.0 规范的前八章。后续见 第二部分
简介
USB(Universal Serial Bus) 是一种支持热插拔的高速串行传输总线,它使用差分信号来传输数据。在USB 1.0和 USB 1.1 版本中,只支持1.5Mb/s 的低速(low-speed)模式和 12Mb/s 的全速(full-speed)模式,在USB 2.0中...
大小端序列及判断方法(十六进制方法)
why_so_hot的博客
09-18
759
小端:低字节存放在低内存地址处大端:低字节存放在高内存地址出以0x12345678为例,从左到右为高字节到低字节,例如0x12就是高字节,0x78就是低字节,下面是实例。
[Ethernet] Ethernet 权威指南 第2版 英文版
11-08
☆ 资源说明:☆
[奥莱理] Ethernet 权威指南 第2版 英文版
[奥莱理] Ethernet The Definitive Guide 2nd Edition E Book
☆ 图书概要:☆
Get up to speed on the latest Ethernet capabilities for building and maintaining networks for everything from homes and offices to data centers and server machine rooms This thoroughly revised comprehensive guide covers a wide range of Ethernet technologies from basic operation to network management based on the authors’ many years of field experience
When should you upgrade to higher speed Ethernet How do you use switches to build larger networks How do you troubleshoot the system This book provides the answers If you’re looking to build a scalable network with Ethernet to satisfy greater bandwidth and market requirements this book is indeed the definitive guide
☆ 出版信息:☆
[作者信息] Charles E Spurgeon Joann Zimmerman
[出版机构] 奥莱理
[出版日期] 2014年04月03日
[图书页数] 508页
[图书语言] 英语
[图书格式] PDF 格式">☆ 资源说明:☆
[奥莱理] Ethernet 权威指南 第2版 英文版
[奥莱理] Ethernet The Definitive Guide 2nd Edition E Book
☆ 图书概要:☆
Get up to speed on the latest Ethernet capabilities for building and maintaining networks for everything from homes and offices to da [更多]
交换机PPS计算
cuijuan9591的博客
02-17
1271
讲一下PPS是如何计算的我们知道1个千兆端口的线速包转发率是1.4881MPPS,百兆端口的线速包转发率是0.14881MPPS,这是国际标准,但是如何得来的呢?具体的数据包在传输过程中会在每个包的前面加上64个(前导符)pre...
以太网
加菲的博客
03-17
4862
3.0以太网发展过程与内容简介以太网是当今最广泛的局域网。1、 传输媒体从采用同轴电缆到双绞线缆和光纤2、 从共享式以太网发展到交换式以太网3、 出现VLAN和三层交换技术4、 从低俗以太网发展到高速以太网 同轴电缆缺点:太硬不适合布线双绞线和光纤联合布线。 最初以太网是总线式以太网(共享式以太网)以太网交换机诞生,共享式以太网转变为交换式以太网交换导致大量MAC帧广播导致危害,VLAN出现三层交...
python之用scapy分层解析pcap报文(Ethernet帧、IP数据包、TCP数据包、UDP数据包、Raw数据包)
GFS_lele的博客
03-27
2万+
一、工具准备
下载安装scapy库(https://blog.csdn.net/qq_23977687/article/details/88046257)
二、scapy用法
1.1、得到数据
有两种方式,实时抓包,读取 pcap文件
实时抓包:利用sniff方法来实现(eth0是要检测的网卡名,count是抓包的数量)
from scapy.all import...
万兆位以太网及其实用技术 pdf
最新发布
09-14
万兆位以太网(10 Gigabit Ethernet, 10GbE)是一种高速的局域网传输技术,它提供了可靠、高带宽的网络连接。该技术的发展使得数据传输速度大大提高,适用于需要高频宽的应用场景。 万兆位以太网实用技术pdf是一种...
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
@tzk
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
95
原创
5万+
周排名
150万+
总排名
29万+
访问
等级
3104
积分
54
粉丝
177
获赞
27
评论
735
收藏
私信
关注
热门文章
linux中.sh文件是什么?怎么执行?
86396
linux命令行怎么快速移动到命令最前或者最后
10672
html JavaScript 和css之间的关系总结
8341
docker 中的 -v 命令
8218
几个问题帮你认识“NIC”----网卡
7583
分类专栏
linux
26篇
网络的基本知识
28篇
工具
5篇
sdn控制器
1篇
ovs交换机
11篇
docker
23篇
数据库
4篇
c
1篇
杂记
1篇
git
5篇
网络安全
9篇
python
3篇
计算机里面的一些概念知识
1篇
java
17篇
最新评论
ubuntu 下实现 quagga镜像
m0_51916622:
大佬想问下apt install quagga这一步显示no installation candidate咋办呀?一直换源也没用
docker 中kali镜像安装
黑化的白羊:
请问下以上kali镜像包是哪里的?
ssh-agent与ssh-sshd,开启ssh服务
dinfy:
为什么你有那么多sshd,ssh- agent就2个
按下删除键出现 ^H 乱码现象总结
@tzk:
嗯嗯,谢谢哈
Centos8启动盘制作流程
@tzk:
没看博客,你这边解决了嘛?有两个思路1、看看是不是识别到你的u盘了,2、看看你的镜像是不是有问题,我专栏linux里面的有一篇关于装系统的展示
最新文章
grub-core/fs/fshelp.c:258:file ‘/initramfs-4.18.0-305.19.1.e18_4.x86_64.img‘ not found
yum update 更新失败内核问题--rdma-core(x86-64)
Centos8启动盘制作流程
2021年7篇
2020年41篇
2019年51篇
2017年17篇
目录
目录
分类专栏
linux
26篇
网络的基本知识
28篇
工具
5篇
sdn控制器
1篇
ovs交换机
11篇
docker
23篇
数据库
4篇
c
1篇
杂记
1篇
git
5篇
网络安全
9篇
python
3篇
计算机里面的一些概念知识
1篇
java
17篇
目录
评论 1
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
以太网(英语:Ethernet) - 知乎
以太网(英语:Ethernet) - 知乎切换模式写文章登录/注册以太网(英语:Ethernet)sunny以太网(英语:Ethernet)是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。以太网是目前应用最普遍的局域网技术,替换了其他局域网标准如令牌环、FDDI和ARCNET。以太网是指符合 IEEE 802.3 标准的局域网 (LAN) 产品组,最早出现于 1970 年代。以太网是一种全球化的电线电缆系统标准,支持多台计算机通过一个网络连接,没有它,现代社会采用的各种设备之间可能无法通信。以太网的雏形是一条电缆(这也是它与Wi-Fi技术最为显著的差别所在),支持多台设备连接至同一网络。如今,以太网网络可根据需要扩展和覆盖新设备,是目前全球最受欢迎、使用范围最广泛的网络技术。使用以太网时,数据流被分割成更短的数据块或帧,每个都包含特定的信息,例如数据的源和目的地。要按照需求通过网络发送和接收数据,这些数据是不可或缺的。标准以太网的数据传输速度在 10 Mbps 到 100 Mbps 之间。千兆以太网则是IEEE 802.3标准中使用的一个术语,用于表示以 1 Gbps 的速度传输的以太网网速。千兆以太网最初一般用于主干网络传输,以及高性能或高容量服务器。但随着时间发展,它逐渐受到桌面连接设备和PC的支持。以下从本人觉得是“有用”的角度来作回答,如有错误,参看“声明”:1.以太网是一种将几台电脑连接起来,能够进行通讯的技术,也就是组建所谓的“局域网”。 但这种技术并非只有以太网一种,还有“令牌网”、“FDDI网”等等。2.以太网技术规范太复杂,本人就“不求甚解”了,觉得以下两点比较重要:Ⅰ.以网卡的“MAC地址”通讯; 不是以“IP地址”来通讯的,但计算机为了兼容性,还是设置一整套网络分层架构,以便接入“互联网”就能使用。Ⅱ.以arp广播的方式获取局域网内计算机的“MAC地址”。 发送arp广播,局域网所有计算机都能收到,如在教室里喊:“谁是某某某(IP)?”,某同学站起来说:“是我(MAC地址)。”这时你就知道某同学的的“MAC地址”。注意这时,其他同学也能听到你喊,但他们没有理会(丢弃)。编辑于 2020-09-27 11:26以太网(Ethernet)赞同 11 条评论分享喜欢收藏申请
百度百科-验证
百度百科-验证
以太网 - 维基百科,自由的百科全书
以太网 - 维基百科,自由的百科全书
跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页分类索引特色内容新闻动态最近更改随机条目资助维基百科
帮助
帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科
搜索
搜索
创建账号
登录
个人工具
创建账号 登录
未登录编辑者的页面 了解详情
贡献讨论
目录
移至侧栏
隐藏
序言
1历史
2概述
3CSMA/CD共享介质以太网
4以太网中继器和集线器
5桥接和交换
6类型
开关类型子章节
6.1早期的以太网
6.210Mbps乙太網
6.3100Mbps以太网(快速以太网)
6.41Gbps以太网
6.510Gbps以太网
6.6100Gbps以太网
7参考文献
8参見
9外部链接
开关目录
以太网
76种语言
AfrikaansالعربيةAsturianuAzərbaycancaБеларускаяБългарскиবাংলাBrezhonegBosanskiCatalàکوردیČeštinaDanskDeutschΕλληνικάEnglishEsperantoEspañolEestiEuskaraفارسیSuomiVõroFrançaisGaeilgeGalegoગુજરાતીGaelgעבריתहिन्दीHrvatskiMagyarBahasa IndonesiaÍslenskaItaliano日本語Қазақшаಕನ್ನಡ한국어KurdîLatinaLëtzebuergeschLombardLietuviųLatviešuМакедонскиമലയാളംमराठीBahasa MelayuNederlandsNorsk nynorskNorsk bokmålਪੰਜਾਬੀPolskiپښتوPortuguêsRomânăРусскийSrpskohrvatski / српскохрватскиSimple EnglishSlovenčinaSlovenščinaShqipСрпски / srpskiSvenskaதமிழ்తెలుగుไทยTagalogTürkçeУкраїнськаاردوTiếng Việt吴语ייִדיש粵語
编辑链接
条目讨论
不转换
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
阅读编辑查看历史
工具
工具
移至侧栏
隐藏
操作
阅读编辑查看历史
常规
链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目
打印/导出
下载为PDF打印页面
在其他项目中
维基共享资源
维基百科,自由的百科全书
電腦網路的類型
依覆盖范围排序列表
纳米网络
近場通訊(NFC)
藍牙
體域網
個人區域網絡(PAN)
无线个人网
局域网(LAN)
有线局域网
以太网
令牌环
光纤分布式数据接口
无线局域网(WLAN)
Wi-Fi
ZigBee
Thread
MMDS
SMDS
虚拟局域网(VLAN)
家庭网络(英语:Home network)(HAN)
存储区域网络(SAN)
园区网络(CAN)
骨幹網
城域网(MAN)
广域网(WAN)
异步传输模式
帧中继
同步数字体系(SDH)
企业专用网络
虛擬私人網路(VPN)
雲端(英语:Internet area network)
互联网
星际互联网(IPN)
查论编
「Ethernet」的各地常用名稱笔记本电脑上已插上网路线的以太网接口中国大陸以太网 臺灣乙太網路
以太网(英語:Ethernet)是一种计算机局域网技术。IEEE組織的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问控制的内容。以太网是目前应用最普遍的局域网技术,取代了其他局域网标准如令牌环、FDDI和ARCNET。
以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了减少冲突,將能提高的网络速度和使用效率最大化,使用交换机(Switch hub)来进行网络连接和组织。如此一來,以太网的拓扑结构就成了星型;但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detection,即載波多重存取/碰撞偵測)的总线技术。
历史[编辑]
以太网技术起源於施樂帕洛阿尔托研究中心的先锋技术项目。人们通常认为以太网发明于1973年,当年鲍勃.梅特卡夫(Bob Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。但是梅特卡夫本人认为以太网是之后几年才出现的。在1976年,梅特卡夫和他的助手David Boggs发表了一篇名为《以太网:區域计算机网络的分布式封包交换技术》的文章。
網際網路协议套組
應用層
BGP
DHCP
DNS
FTP
HTTP
HTTPS
IMAP
LDAP
MGCP(英语:Media Gateway Control Protocol)
MQTT
NNTP
NTP
POP
ONC/RPC
RTP
RTSP
SIP
SMTP
SNMP
Telnet
TLS/SSL
SSH
XMPP
更多...
傳輸層
TCP
UDP
DCCP
SCTP
RSVP
更多...
網路層
IP
IPv4
IPv6
ICMP
ICMPv6
ECN
IGMP
OSPF
IPsec
RIP
更多...
連結層
ARP
NDP
Tunnels
L2TP
PPP
MAC
Ethernet
DSL
ISDN
FDDI
更多...
查论编
1979年,梅特卡夫为了开发个人电脑和局域网离开了施乐(Xerox),成立了3Com公司。3Com对DEC、英特尔和施乐进行游说,希望与他们一起将以太网标准化、规范化。这个通用的以太网标准于1980年9月30日提出。当时业界有两个流行的非公用网络标准令牌环网和ARCNET,在以太网浪潮的冲击下他们很快萎缩并被取代。而在此过程中,3Com也成了一个国际化的大公司。
梅特卡夫曾经开玩笑说,Jerry Saltzer为3Com的成功作出了贡献。Saltzer在一篇[哪個/哪些?]与他人合著的很有影响力的论文中指出,在理论上令牌环网要比以太网优越。受到此结论的影响,很多电脑厂商或犹豫不决或决定不把以太网接口做为机器的标准配置,这样3Com才有机会从销售以太网网卡大赚。这种情况也导致了另一种说法“以太网不适合在理论中研究,只适合在实际中应用”。也许只是句玩笑话,但这说明了这样一个技术观点:通常情况下,网络中实际的数据流特性与人们在局域网普及之前的估计不同,而正是因为以太网简单的结构才使局域网得以普及。梅特卡夫和Saltzer曾经在麻省理工学院MAC项目(Project MAC)的同一层楼工作,当时他正在做自己的哈佛大学毕业论文,在此期间奠定了以太网技术的理论基础。[來源請求]
概述[编辑]
1990年代的以太网网卡或叫NIC(Network Interface Card,以太网适配器)。这张卡可以支持基于同轴电缆的10BASE2 (BNC连接器,左)和基于双绞线的10BASE-T(RJ-45,右)。
以太网實作了网络上无线电系统多个节点发送信息的想法,每个节点必须取得电缆或者信道才能传送信息,有时也叫作以太(Ether)。这个名字来源于19世纪的物理学家假设的电磁辐射媒体——光以太。 每一个节点有全球唯一的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有節點能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。
以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要。
CSMA/CD共享介质以太网[编辑]
带冲突检测的载波侦听多路访问(CSMA/CD)技术规定了多台电脑共享一个通道的方法。这项技术最早出现在1960年代由夏威夷大学开发的ALOHAnet,它使用无线电波为载体。这个方法要比令牌环网或者主控制网简单。当某台电脑要发送信息时,在以下行動與狀態之間進行轉換:
开始 - 如果线路空闲,则启动传输,否则跳转到第4步。
发送 - 如果检测到冲突,继续发送数据直到达到最小回報时间(min echo receive interval)以確保所有其他转发器和终端检测到冲突,而後跳轉到第4步。
成功传输 - 向更高层的网络协议报告发送成功,退出传输模式。
線路繁忙 - 持續等待直到线路空闲。
线路空闲 - 在尚未達到最大尝试次數之前,每隔一段随机时间转到第1步重新嘗試。
超过最大尝试传输次数 - 向更高层的网络协议报告发送失败,退出传输模式。
就像在没有主持人的座谈会中,所有的参加者都透過一个共同的媒介(空气)来相互交谈。每个参加者在讲话前,都礼貌地等待别人把话讲完。如果两个客人同时开始讲话,那么他们都停下来,分别随机等待一段时间再开始讲话。这时,如果两个参加者等待的时间不同,冲突就不会出现。如果传输失败超过一次,将延遲指数增长时间後再次嘗試。延遲的时间通过截斷二進位指數後移(英语:Exponential_backoff)(truncated binary exponential backoff)演算法来实现。
最初的以太网是采用同轴电缆来連接各个设备的。电脑透過一个叫做附加单元接口(Attachment Unit Interface,AUI)的收发器连接到电缆上。一條简单网路线对于一个小型网络来说很可靠,而对于大型网络来说,某处线路的故障或某个连接器的故障,都会造成以太网某个或多个网段的不稳定。
因为所有的通信信号都在共用线路上传输,即使信息只是想发给其中的一个终端(destination),卻會使用廣播的形式,發送給線路上的所有電腦。在正常情况下,网络接口卡会滤掉不是发送给自己的信息,接收到目标地址是自己的信息时才会向CPU发出中断请求,除非网卡处于混杂模式(Promiscuous mode)。这种“一个说,大家听”的特质是共享介质以太网在安全上的弱点,因为以太网上的一个节点可以选择是否监听线路上传输的所有信息。共享电缆也意味着共享带宽,所以在某些情况下以太网的速度可能会非常慢,比如电源故障之后,当所有的网络终端都重新启动时。
以太网中继器和集线器[编辑]
在以太网技术的发展中,以太网集线器(Ethernet Hub)的出现使得网络更加可靠,接线更加方便。
因为信号的衰减和延时,根据不同的介质以太网段有距离限制。例如,10BASE5同轴电缆最长距离500米 (1,640英尺)。最大距离可以透過以太网中继器实现,中继器可以把电缆中的信号放大再传送到下一段。中继器最多连接5个网段,但是只能有4个设备(即一个网段最多可以接4个中继器)。这可以减轻因为电缆断裂造成的问题:当一段同轴电缆断开,所有这个段上的设备就无法通讯,中继器可以保证其他网段正常工作。
类似于其他的高速总线,以太网网段必须在两头以电阻器作为终端。对于同轴电缆,电缆两头的终端必须接上被称作“终端器”的50欧姆的电阻和散热器,如果不这么做,就会发生类似电缆断掉的情况:总线上的AC信号当到达终端时将被反射,而不能消散。被反射的信号将被认为是冲突,从而使通信无法继续。中继器可以将连在其上的两个网段进行电气隔离,增强和同步信号。大多数中继器都有被称作“自动隔离”的功能,可以把有太多冲突或是冲突持续时间太长的网段隔离开来,这样其他的网段不会受到损坏部分的影响。中继器在检测到冲突消失后可以恢复网段的连接。
随着应用的拓展,人们逐渐发现星型的网络拓扑结构最为有效,于是设备厂商们开始研制有多个端口的中继器。多端口中继器就是众所周知的集线器(Hub)。集线器可以连接到其他的集线器或者同轴网络。
第一个集线器被认为是“多端口收发器”或者叫做“fanouts”。最著名的例子是DEC的DELNI,它可以使许多台具有AUI连接器的主机共用一个收发器。集线器也导致了不使用同轴电缆的小型独立以太网网段的出现。
像DEC和SynOptics这样的网络设备制造商曾经出售过用于连接许多10BASE-2细同轴线网段的集线器。
非屏蔽双绞线(unshielded twisted-pair cables , UTP)最先应用在星型局域网中,之后也在10BASE-T中应用,最後取代了同轴电缆成为以太网的标准。这项改进之后,RJ45电话接口代替了AUI成为电脑和集线器的标准線路,非屏蔽3类双绞线/5类双绞线成为标准载体。集线器的应用使某条电缆或某个设备的故障不会影响到整个网络,提高了以太网的可靠性。双绞线以太网把每一个网段点对点地连起来,这样终端就可以做成一个标准的硬件,解决了以太网的终端问题。
采用集线器组网的以太网尽管在物理上是星型结构,但在逻辑上仍然是总线型的,半双工的通信方式采用CSMA/CD的冲突检测方法,集线器对于减少封包冲突的作用很小。每一个数据包都被发送到集线器的每一个端口,所以带宽和安全问题仍没有解决。集线器的总傳輸量受到单个连接速度的限制(10或100 Mbit/s),这还是考虑在前同步码、傳輸間隔、檔頭、檔尾和封裝上都是最小花費的情况。当网络负载过重时,冲突也常常会降低傳輸量。最坏的情况是,当许多用长电缆组成的主机传送很多非常短的帧(frame)时,可能因衝突過多導致网络的负载在仅50%左右程度就滿載。为了在冲突严重降低傳輸量之前尽量提高网络的负载,通常会先做一些设定以避免類似情況發生。
桥接和交换[编辑]
尽管中继器在某些方面分隔了以太网网段,使得电缆断线的故障不会影响到整个网络,但它向所有的以太网设备转发所有的数据。这严重限制了同一个以太网网络上可以相互通信的机器数量。为了减轻这个问题,桥接方法被采用,在工作在物理层的中继器之基础上,桥接工作在数据链路层。透過橋接器时,只有格式完整的数据包才能从一个网段进入另一个网段;冲突和数据包错误则都被隔离。透過记录分析网络上设备的MAC地址,网桥可以判断它们都在什么位置,这样它就不会向非目标设备所在的网段传递数据包。像生成树协议这样的控制机制可以协调多个交换机共同工作。
早期的网桥要检测每一个数据包,因此當同时处理多个端口的时候,数据转发比Hub(中继器)來得慢。1989年网络公司Kalpana发明了EtherSwitch,第一台以太网交换机。以太网交换机把桥接功能用硬件实现,这样就能保证转发数据速率达到线速。
大多数现代以太网用以太网交换机代替Hub。尽管布线方式和Hub以太网相同,但交换式以太网比共享介质以太网有很多明显的优势,例如更大的带宽和更好的异常结果隔离设备。交换网络典型的使用星型拓扑,雖然设备在半双工模式下運作時仍是共享介质的多節点网,但10BASE-T和以后的标准皆為全双工以太网,不再是共享介质系统。
交换机啟動后,一開始也和Hub一樣,转发所有数据到所有端口。接下来,当它記錄了每个端口的地址以后,他就只把非广播数据发送给特定的目的端口。因此线速以太网交换可以在任何端口对之间实现,所有端口对之间的通讯互不干扰。
因为数据包一般只是发送到他的目的端口,所以交换式以太网上的流量要略微小于共享介质式以太网。然而,交换式以太网仍然是不安全的网络技术,因为它很容易因为ARP欺骗或者MAC满溢而瘫痪,同时网络管理员也可以利用监控功能抓取网络数据包。
当只有简单设备(除Hub之外的设备)連接交换机端口時,整个网络可能處於全双工模式。如果一个网段只有2个设备,那么冲突探测也不需要了,两个设备可以随时收发数据。這時总带宽是鏈路的2倍,雖然雙方的頻寬相同,但没有发生冲突就意味着几乎能利用到100%的带宽。
交换机端口和所连接的设备必须使用相同的双工设置。多数100BASE-TX和1000BASE-T设备支持自动协商特性,即这些设备透過信号来协调要使用的速率和双工设置。然而,如果自动协商功能被關閉或者设备不支持,则双工设置必须透過自动检测进行设置或在交换机端口和设备上都进行手工设置以避免双工错配——这是以太网问题的一种常见原因(设备被设置为半双工会报告迟发冲突,而设备被设为全双工则会报告runt)。许多較低層級的交换机没有手工进行速率和双工设置的能力,因此端口总是会尝试进行自动协商。当启用了自动协商但不成功时(例如其他设备不支持),自动协商会将端口设置为半双工。速率是可以自动感测的,因此将一个10BASE-T设备连接到一个启用了自动协商的10/100交换端口上时将可以成功地建立一个半双工的10BASE-T连接。但是将一个配置为全双工100Mb工作的设备连接到一个配置为自动协商的交换端口时(反之亦然)则会导致双工错配。
即使电缆两端都设置成自动速率和双工模式协商,错误猜测还是经常发生而退到10Mbps模式。因此,如果性能差于预期,应该查看一下是否有计算机设置成10Mbps模式了,如果已知另一端配置为100Mbit,则可以手动强制设置成正确模式。
当两个节点试图用超过电缆最高支持数据速率(例如在3类线上使用100Mbps或者3类/5类线使用1000Mbps)通信时就会发生问题。不像ADSL或者传统的拨号Modem透過详细的方法检测鏈路的最高支持数据速率,以太网节点只是简单的选择两端支持的最高速率而不管中间线路,因此如果速率过高就会导致鏈路失效。解决方案為强制通讯端降低到电缆支持的速率。
类型[编辑]
除了以上提到的不同帧类型以外,各类以太网的差别仅在速率和配线。因此,同样的网络协议栈软件可以在大多数以太网上执行。
以下的章节简要综述了不同的正式以太网类型。除了这些正式的标准以外,许多厂商因为一些特殊的原因,例如为了支持更长距离的光纤传输,而制定了一些专用的标准。
很多以太网卡和交换设备都支持多速率,设备之间透過自动协商设置最佳的连接速度和双工方式。如果协商失败,多速率设备就会探测另一方使用的速率但是默认为半双工方式。10/100以太网端口支持10BASE-T和100BASE-TX。10/100/1000支持10BASE-T、100BASE-TX和1000BASE-T。
部分以太网类型[1]
速度
常用名称
非正式的IEEE标准名称
正式的IEEE标准名称
线缆类型
最大传输距离
10Mbps
以太网
10BASE-T
802.3
双绞线
100m
100Mbps
快速以太网
100BASE-T
802.3u
双绞线
100m
1Gbps
吉比特以太网
1000BASE-LX
802.3z
光纤
5000m
1Gbps
吉比特以太网
1000BASE-T
802.3ab
双绞线
100m
10Gbps
10吉比特以太网
10GBASE-T
802.3an
双绞线
100m
早期的以太网[编辑]
参见:兆比特以太网
施乐以太网(Xerox Ethernet,又稱「全錄乙太網」)──是乙太網的雛型。最初的2.94Mbit/s以太网僅在全錄公司裡內部使用。而在1982年,Xerox與DEC及Intel組成DIX聯盟,並共同發表了Ethernet Version 2(EV2)的規格,並將它投入商場市場,且被普遍使用。而EV2的網絡就是目前受IEEE承認的10BASE5。[2]
10BROAD36 ──已经过时。一个早期的支持长距离以太网的标准。它在同轴电缆上使用,以一种类似线缆调制解调器系统的宽带调制技术。
1BASE5 ──也稱為星型局域网,速率是1Mbit/s。在商业上很失败,但同時也是双绞线的第一次使用。
10Mbps乙太網[编辑]
10BASE-T電纜
参见:十兆以太网
10BASE5(又稱粗纜(Thick Ethernet)或黃色電纜)──最早實現10 Mbit/s以太網。早期IEEE標準,使用單根RG-11同軸電纜,最大距離為500米,並最多可以連接100台電腦的收發器,而纜線兩端必須接上50歐姆的終端電阻。接收端透過所謂的「插入式分接頭」插入電纜的內芯和屏蔽層。在電纜終結處使用N型連接器。儘管由於早期的大量布設,到現在還有一些系統在使用,這一標準實際上被10BASE2取代。
10BASE2(又稱細纜(Thin Ethernet)或模擬網路)── 10BASE5後的產品,使用RG-58同軸電纜,最長轉輸距離約200米(實際為185米),僅能連接30台計算機,計算機使用T型適配器連接到帶有BNC連接器的網卡,而線路兩頭需要50歐姆的終結器。雖然在能力、規格上不及10BASE5,但是因為其線材較細、佈線方便、成本也便宜,所以得到更廣泛的使用,淘汰了10BASE5。由於雙絞線的普及,它也被各式的雙絞線網絡取代。
StarLAN ──第一個雙絞線上實現的以太網路標準10 Mbit/s。後發展成10BASE-T。
10BASE-T ──使用3類雙絞線、4類雙絞線、5類雙絞線的4根線(兩對雙絞線)100米。以太網集線器或以太網交換機位於中間連接所有節點。
FOIRL ──光纖中繼器鏈路。光纖以太網路原始版本。
10BASE-F ── 10Mbps以太網光纖標準通稱,2公里。只有10BASE-FL應用比較廣泛。
10BASE-FL ── FOIRL標準一種升級。
10BASE-FB ──用於連接多個Hub或者交換機的骨幹網技術,已廢棄。
10BASE-FP ──無中繼被動星型網,沒有實際應用的案例。
100Mbps以太网(快速以太网)[编辑]
参见:百兆以太网
快速以太网(Fast Ethernet)為IEEE在1995年發表的網路標準,能提供達100Mbps的傳輸速度。[2]
100BASE-T -- 下面三个100 Mbit/s双绞线标准通称,最远100米。
100BASE-TX -- 类似于星型结构的10BASE-T。使用2对电缆,但是需要5类电缆以达到100Mbit/s。
100BASE-T4 -- 使用3类电缆,使用所有4对线,半双工。由于5类线普及,已废弃。
100BASE-T2 -- 无产品。使用3类电缆。支持全双工使用2对线,功能等效100BASE-TX,但支持旧电缆。
100BASE-FX -- 使用多模光纤,最远支持400米,半双工连接 (保证冲突检测),2km全双工。
100VG AnyLAN -- 只有惠普支持,VG最早出现在市场上。需要4对三类电缆。也有人怀疑VG不是以太网。
苹果的千兆以太网络接口
1Gbps以太网[编辑]
参见:吉比特以太网
1000BASE-SX的光信號與電氣信號轉換器
1000BASE-T -- 1 Gbit/s介质超五类双绞线或6类双绞线。
1000BASE-SX -- 1 Gbit/s多模光纤(取決於頻率以及光纖半徑,使用多模光纖時最長距離在220M至550M之間)。[3]
1000BASE-LX -- 1 Gbit/s多模光纤(小於550M)、單模光纖(小於5000M)。[4]
1000BASE-LX10 -- 1 Gbit/s单模光纤(小于10KM)。长距离方案
1000BASE-LHX --1 Gbit/s单模光纤(10KM至40KM)。长距离方案
1000BASE-ZX --1 Gbit/s单模光纤(40KM至70KM)。长距离方案
1000BASE-CX -- 铜缆上达到1Gbps的短距离(小于25 m)方案。早于1000BASE-T,已废弃。
10Gbps以太网[编辑]
参见:10吉比特乙太網路
新的万兆以太网标准包含7种不同类型,分別适用于局域网、城域网和广域网。目前使用附加标准IEEE 802.3ae,将来会合并进IEEE 802.3标准。
10GBASE-CX4 -- 短距离铜缆方案用于InfiniBand 4x连接器和CX4电缆,最大长度15米。
10GBASE-SR -- 用于短距离多模光纤,根据电缆类型能达到26-82米,使用新型2GHz多模光纤可以达到300米。
10GBASE-LX4 -- 使用波分复用支持多模光纤240-300米,单模光纤超过10公里。
10GBASE-LR和10GBASE-ER -- 透過单模光纤分别支持10公里和40公里
10GBASE-SW、10GBASE-LW、10GBASE-EW。用于广域网PHY、OC-192 / STM-64 同步光纤网/SDH设备。物理层分别对应10GBASE-SR、10GBASE-LR和10GBASE-ER,因此使用相同光纤支持距离也一致。(无广域网PHY标准)
10GBASE-T -- 使用屏蔽或非屏蔽双绞线,使用CAT-6A类线至少支持100米传输。CAT-6类线也在较短的距离上支持10GBASE-T。
100Gbps以太网[编辑]
参见:100吉比特以太网
新的40G/100G以太网标准在2010年中制定完成,包含若干种不同的节制类型。目前使用附加标准IEEE 802.3ba。
40GBASE-KR4 -- 背板方案,最少距离1米。
40GBASE-CR4 / 100GBASE-CR10 -- 短距离铜缆方案,最大长度大约7米。
40GBASE-SR4 / 100GBASE-SR10 -- 用于短距离多模光纤,长度至少在100米以上。
40GBASE-LR4 / 100GBASE-LR10 -- 使用单模光纤,距离超过10公里。
100GBASE-ER4 -- 使用单模光纤,距离超过40公里。
参考文献[编辑]
^ Wendell Odom. CCENT/CCNA ICND1 100-105 Official Cert Guide. Cisco Press. 2016: 43页. ISBN 978-1-58720-580-4.
^ 2.0 2.1 Internet協定觀念與實作ISBN 9577177069
^ IEEE 802.3-2008 Section 3 Table 38-2 p.109
^ IEEE 802.3-2008 Section 3 Table 38-6 p.111
参見[编辑]
5类双绞线
RJ45
Power over Ethernet
MII and PHY
网络唤醒
1G以太网
10G以太网
100G以太网
1000G以太网
虚拟局域网
生成树协议
通讯
Internet
以太网帧格式
外部链接[编辑]
IEEE 802.3 2002年标准(页面存档备份,存于互联网档案馆)
万兆以太网(页面存档备份,存于互联网档案馆)
以太网帧格式(页面存档备份,存于互联网档案馆)
万兆IP以太网白皮书
千兆以太网(1000BaseT)(页面存档备份,存于互联网档案馆)
查论编局域网技术之以太网家族速度
10Mbit/s
双绞线以太网
100Mbit/s
1Gbit/s
2.5和5Gbit/s
10Gbit/s
25和50Gbit/s(英语:25 Gigabit Ethernet)
40和100Gbit/s
200Gbit/s和400Gbit/s
常规
IEEE 802.3
乙太網路實體層(英语:Ethernet physical layer)
自动协商(英语:Autonegotiation)
以太网供电
以太类型
以太网联盟(英语:Ethernet Alliance)
流控制
帧
巨型帧
历史
CSMA/CD
StarLAN(英语:StarLAN)
10BROAD36(英语:10BROAD36)
10BASE-FB(英语:10BASE-FB)
10BASE-FL(英语:10BASE-FL)
10BASE5(英语:10BASE5)
10BASE2(英语:10BASE2)
100BaseVG(英语:100BaseVG)
LattisNet(英语:LattisNet)
长距离(英语:Long Reach Ethernet)
应用程序
音频(英语:Audio over Ethernet)
运营商(英语:Carrier Ethernet)
数据中心(英语:Data center bridging)
高能效以太网
第一英里(英语:Ethernet in the first mile)
10G-EPON(英语:10G-EPON)
工業以太網
以太网供电
同步(英语:Synchronous Ethernet)
收发器
MAU(英语:Medium Attachment Unit)
GBIC
SFP
XENPAK
X2
XFP
SFP+
QSFP(英语:QSFP)
CFP(英语:C Form-factor Pluggable)
接口
AUI(英语:Attachment Unit Interface)
MDI
MII
GMII
XGMII
XAUI
分类
维基共享
查论编網際網路存取有线网络
线缆(英语:Cable Internet access)
拨号
DOCSIS
DSL
以太网
FTTx
G.hn(英语:G.hn)
HD-PLC
HomePlug
HomePNA(英语:HomePNA)
IEEE 1901(英语:IEEE 1901)
ISDN
MoCA(英语:Multimedia over Coax Alliance)
PON
电力线
宽带
无线个人局域网
藍牙
Li-Fi
无线USB
无线局域网
Wi-Fi
无线广域网
DECT
EV-DO
GPRS
HSPA
HSPA+
iBurst(英语:iBurst)
LTE
MMDS
Muni Wi-Fi
WiMAX
WiBro
卫星上网
查论编IEEE標準当前标准
488
754
Revision(英语:IEEE 754 revision)
829
830
1003
1014-1987(英语:VMEbus)
1016
1076
1149.1
1164(英语:IEEE 1164)
1219
1233
1275(英语:Open Firmware)
1278(英语:Distributed Interactive Simulation)
1284(英语:IEEE 1284)
1355(英语:IEEE 1355)
1364
1394
1451(英语:IEEE 1451)
1471(英语:IEEE 1471)
1491
1516(英语:High-level architecture (simulation))
1541-2002
1547(英语:IEEE 1547)
1584(英语:IEEE 1584)
1588(英语:Precision Time Protocol)
1596(英语:Scalable Coherent Interface)
1603(英语:IEEE 1603)
1613(英语:IEEE 1613)
1667(英语:IEEE 1667)
1675(英语:IEEE 1675-2008)
1685(英语:IP-XACT)
1800
1801(英语:Unified Power Format)
1900(英语:DySPAN)
1901(英语:IEEE 1901)
1902(英语:RuBee)
11073(英语:ISO/IEEE 11073)
12207(英语:IEEE 12207)
2030(英语:IEEE 2030)
14764
16085
16326
42010(英语:ISO/IEC 42010)
802系列802.1
p
Q
Qat(英语:Stream Reservation Protocol)
Qay(英语:Provider Backbone Bridge Traffic Engineering)
X
ad
AE(英语:IEEE 802.1AE)
ag(英语:IEEE 802.1ag)
ah(英语:IEEE 802.1ah-2008)
ak(英语:Multiple Registration Protocol)
aq
ax
802.11
Legacy
a
b
d(英语:IEEE 802.11d-2001)
e(英语:IEEE 802.11e-2005)
f(英语:Inter-Access Point Protocol)
g
h(英语:IEEE 802.11h-2003)
i(英语:IEEE 802.11i-2004)
j(英语:IEEE 802.11j-2004)
k(英语:IEEE 802.11k-2008)
n (Wi-Fi 4)
p
r
s
u(英语:IEEE 802.11u)
v(英语:IEEE 802.11v)
w(英语:IEEE 802.11w-2009)
y(英语:IEEE 802.11y-2008)
ac (Wi-Fi 5)
ad (WiGig)
af
ah
ai
aj
aq
ax (Wi-Fi 6)
ay (WiGig 2)
be (Wi-Fi 7)
.2
.3
.4
.5
.6(英语:IEEE 802.6)
.7(英语:IEEE 802.7)
.8
.9(英语:IEEE 802.9)
.10(英语:IEEE 802.10)
.12(英语:IEEE 802.12)
.15
.15.4(英语:IEEE 802.15.4)
.15.4a(英语:IEEE 802.15.4a)
.16
.18(英语:IEEE 802.18)
.20(英语:IEEE 802.20)
.21(英语:IEEE 802.21)
.22建议标准
P1363(英语:IEEE P1363)
P1619
P1823(英语:Universal Power Adapter for Mobile Devices)
过时标准
754-1985(英语:IEEE 754-1985)
854-1987(英语:IEEE 854-1987)
另见
IEEE標準協會
Category:IEEE标准
查论编电子计算机基本部件输入设备
鍵盤
數字鍵盤
影像掃描器
显示卡
圖形處理器
麦克风
定点设备
数码绘图板
游戏控制器
光筆(英语:Light pen)
鼠标
光學
指点杆
触摸板
觸控式螢幕
轨迹球
盲文显示机
声卡
聲音處理器(英语:Sound chip)
摄像头
虛擬(英语:Softcam)
输出设备
顯示器
螢幕
盲文显示机
打印机
繪圖儀(英语:Plotter)
揚聲器(英语:Computer speakers)
声卡
显示卡
移动存储
磁碟組(英语:Disk pack)
软盘
光碟
CD
DVD
BD
闪存
記憶卡
闪存盘
机箱
中央处理器
微处理器
主板
記憶體
隨機存取
BIOS
數據存貯器
硬盘
固态硬盘
混合固态硬盘
電源供應器
開關模式電源
金屬氧化物半導體場效電晶體
功率
電壓調節模組
网卡
傳真數據機(英语:Fax modem)
擴充卡
接口(英语:Computer port (hardware))
以太网
FireWire
並列
序列
PS/2
USB
Thunderbolt
DisplayPort/HDMI/DVI/VGA
SATA
TRS
规范控制
AAT: 300266018
GND: 4127501-9
J9U: 987007555681905171
LCCN: sh85045087
取自“https://zh.wikipedia.org/w/index.php?title=以太网&oldid=81300354”
分类:乙太網路计算机总线隐藏分类:含有英語的條目自2014年12月有非常模棱两可或者十分空泛语句的条目自2024年2月有未列明来源语句的条目包含AAT标识符的维基百科条目包含GND标识符的维基百科条目包含J9U标识符的维基百科条目包含LCCN标识符的维基百科条目
本页面最后修订于2024年2月19日 (星期一) 10:07。
本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。
维基媒体基金会是按美国国內稅收法501(c)(3)登记的非营利慈善机构。
隐私政策
关于维基百科
免责声明
行为准则
开发者
统计
Cookie声明
手机版视图
开关有限宽度模式
以太网的核心技术是什么 – PingCode
以太网的核心技术是什么 – PingCode
Menu
首页
产品
产品管理
项目管理
解决方案
解决方案1
解决方案2
博客
研究报告
首页产品
产品
产品管理客户为中心的产品管理工具
项目管理专业的软件研发项目管理工具
知识管理简单易用的团队知识库管理
效能度量可量化的研发效能度量工具
测试管理测试用例维护与计划执行
协作空间以团队为中心的协作沟通
自动化研发工作流自动化工具
目录服务账号认证与安全管理工具
Why PingCode
为什么选择 PingCode ?
6000+企业信赖之选,为研发团队降本增效
Jira 对比
产品视频
产品管理项目管理
解决方案
场景解决方案
Scrum 敏捷开发
Kanban 管理
知识管理
测试管理
产品管理
自动化(即将上线)
行业解决方案
企业服务
汽车电子
先进制造(即将上线)
解决方案1解决方案2
博客研究报告
Search
Search
免费试用
目录
以太网的核心技术是什么
rili
2023-01-15
chakan
729
label@1x
百科
以太网的核心技术是随机争用型介质访问方法。以太网是一种计算机局域网技术。IEEE组织的IEEE 802.3标准制定了以太网的技术标准,它规定了包括物理层的连线、电子信号和介质访问层协议的内容。
一、以太网的核心技术
以太网的核心技术是随机争用型介质访问方法。
以太网(Ethernet)是一种计算机局域网组网技术。IEEE制定的IEEE 802.3标准给出了以太网的技术标准。它规定了包括物理层的连线、电信号和介质访问层协议的内容。以太网是当前应用最普遍的局域网技术。它很大程度上取代了其他局域网标准,如令牌环网(token ring)、FDDI和ARCNET。
以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch hub)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Detect 即带冲突检测的载波监听多路访问)的总线争用技术。
以太网基于网络上无线电系统多个节点发送信息的想法实现,每个节点必须取得电缆或者信道的才能传送信息,有时也叫作以太(Ether)。(这个名字来源于19世纪的物理学家假设的电磁辐射媒体-光以太。后来的研究证明光以太不存在。) 每一个节点有全球少数的48位地址也就是制造商分配给网卡的MAC地址,以保证以太网上所有系统能互相鉴别。由于以太网十分普遍,许多制造商把以太网卡直接集成进计算机主板。已经发现以太网通讯具有自相关性的特点,这对于电信通讯工程十分重要的。
延伸阅读:
二、以太网的分类
1.标准以太网
开始以太网只有10Mbps的吞吐量,使用的是带有冲突检测的载波侦听多路访问(CSMA/CD,Carrier Sense Multiple Access/Collision Detection)的访问控制方法,这种早期的10Mbps以太网称之为标准以太网。以太网可以使用粗同轴电缆、细同轴电缆、非屏蔽双绞线、屏蔽双绞线和光纤等多种传输介质进行连接,并且在IEEE 802.3标准中,为不同的传输介质制定了不同的物理层标准,在这些标准中前面的数字表示传输速度,单位是“Mbps”,最后的一个数字表示单段网线长度(基准单位是100m),Base表示“基带”的意思,Broad代表“带宽”。
10Base-5 使用直径为0.4英寸、阻抗为50Ω粗同轴电缆,也称粗缆以太网,最大网段长度为500m,基带传输方法,拓扑结构为总线型;10Base-5组网主要硬件设备有:粗同轴电缆、带有AUI插口的以太网卡、中继器 、收发器、收发器电缆、终结器等。
2.快速以太网
快速以太网与原来在100Mbps带宽下工作的FDDI相比它具有许多的优点,最主要体现在快速以太网技术可以有效的保障用户在布线基础实施上的投资,它支持3、4、5类双绞线以及光纤的连接,能有效的利用现有的设施。 快速以太网的不足其实也是以太网技术的不足,那就是快速以太网仍是基于CSMA/CD技术,当网络负载较重时,会造成效率的降低,当然这可以使用交换技术来弥补。 100Mbps快速以太网标准又分为:100BASE-TX 、100BASE-FX、100BASE-T4三个子类。
3.千兆以太网
千兆以太网技术作为最新的高速以太网技术,给用户带来了提高核心网络的有效解决方案,这种解决方案的最大优点是继承了传统以太技术价格便宜的优点。 千兆技术仍然是以太技术,它采用了与10M以太网相同的帧格式、帧结构、网络协议、全/半双工工作方式、流控模式以及布线系统。由于该技术不改变传统以太网的桌面应用、操作系统,因此可与10M或100M的以太网很好地配合工作。升级到千兆以太网不必改变网络应用程序、网管部件和网络操作系统,能够最大程度地投资保护。 为了能够侦测到64Bytes资料框的碰撞,Gigabit Ethernet所支持的距离更短。
以上就是关于以太网的内容希望对大家有帮助。
upvote 点赞 2
微信扫一扫
微博扫一扫
知乎扫一扫
推荐文章
神级程序员都用什么工具?2023年程序员生产力工具大全
2023-02-21
软件产品性能的14个关键指标和评估方法
2022-12-27
《2022中国企业敏捷实践白皮书》完整版免费下载
2023-04-10
有哪些是比较好的开源知识管理系统?10大主流知识管理系统对比
2023-02-03
相关阅读
Cloud-IDE 是什么
2023-07-19
Node.js技术栈推荐
2024-03-04
项目经理在项目初期应如何界定项目范围
2024-03-12
小米OPPO之后,星纪魅族也调整芯片业务,今年应届生或被全部优化
2023-08-08
植入芯片会给人造成什么伤害
2024-01-30
linux tc qdisc tbf 中 burst 参数具体是什么作用
2024-01-19
负载均衡有哪些类型
2022-11-17
浅谈安全之应急响应 | FreeBuf甲方社群直播回顾
2023-04-05
高ROI的行业或项目一般有什么样的特点
2023-10-19
Spring Boot 和 Spring Cloud 的区别和联系
2024-02-20
标签云
更多
质量工具
项目成本估算
批判性思维
时间估算
IT预算
进度报告
项目启动会议
战略规划
项目资源管理计划
ITSM
风险登记册
聚类算法
上一篇更改过渡持续时间的四种方式是什么
下一篇什么是数据绑定
相关文章
更改过渡持续时间的四种方式是什么
rili
2023-01-15
chakan
1311
百科
服务器503错误怎么解决
rili
2023-01-15
chakan
3138
百科
HDFS可以存哪些数据
rili
2023-01-15
chakan
515
百科
程序的执行方式是什么
rili
2023-01-15
chakan
778
百科
Hbase适合存哪些数据
rili
2023-01-15
chakan
843
百科
ai图像描摹的作用是什么
rili
2023-01-15
chakan
808
百科
Hadoop是什么
rili
2023-01-15
chakan
413
百科
alu三种运算有哪些
rili
2023-01-15
chakan
532
百科
Hadoop可以处理哪些数据
rili
2023-01-15
chakan
403
百科
spark有哪些组件
rili
2023-01-15
chakan
416
百科
查看更多
产品
产品管理
项目管理
知识管理
测试管理
效能度量
协作空间
自动化
目录服务
解决方案
敏捷开发解决方案
Kanban管理解决方案
文档管理解决方案
测试管理解决方案
企服行业解决方案
资源中心
博客
资讯
百科
敏捷开发指南
需求管理指南
谷歌工程实践| 开发者代码审查指南
工作流程指南
产品管理系统选型指南
中国企业敏捷实践白皮书
公司
关于我们
400-800-1024
违法和不良信息举报邮箱:abuse@worktile.com
扫描二维码关注微信公众号
Weixin
友情链接:
BI数据分析软件
WT内容社区
万象方舟
帆软软件
报表工具
智能化研发管理工具
项目管理工具
京ICP备13017353号京公网安备 11010802032686号 | © 2024 pingcode.com